Suppr超能文献

利用分形分析研究环境变量可预测性的时间尺度依赖性。

Studying the time scale dependence of environmental variables predictability using fractal analysis.

机构信息

Department of Civil and Environmental Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Environ Sci Technol. 2010 Jun 15;44(12):4629-34. doi: 10.1021/es903495q.

Abstract

Prediction of meteorological and air quality variables motivates a lot of research in the atmospheric sciences and exposure assessment communities. An interesting related issue regards the relative predictive power that can be expected at different time scales, and whether it vanishes altogether at certain ranges. An improved understanding of our predictive powers enables better environmental management and more efficient decision making processes. Fractal analysis is commonly used to characterize the self-affinity of time series. This work introduces the Continuous Wavelet Transform (CWT) fractal analysis method as a tool for assessing environmental time series predictability. The high temporal scale resolution of the CWT enables detailed information about the Hurst parameter, a common temporal fractality measure, and thus about time scale variations in predictability. We analyzed a few years records of half-hourly air pollution and meteorological time series from which the trivial seasonal and daily cycles were removed. We encountered a general trend of decreasing Hurst values from about 1.4 (good autocorrelation and predictability), in the sub-daily time scale to 0.5 (which implies complete randomness) in the monthly to seasonal scales. The air pollutants predictability follows that of the meteorological variables in the short time scales but is better at longer scales.

摘要

气象和空气质量变量的预测激发了大气科学和暴露评估领域的大量研究。一个有趣的相关问题是不同时间尺度上可以预期的相对预测能力,以及在某些范围内是否完全消失。更好地了解我们的预测能力可以实现更好的环境管理和更有效的决策制定过程。分形分析通常用于描述时间序列的自相似性。这项工作引入了连续小波变换 (CWT) 分形分析方法,作为评估环境时间序列可预测性的工具。CWT 的高时间尺度分辨率能够提供有关赫斯特参数的详细信息,赫斯特参数是一种常见的时间分形度量,因此能够了解可预测性的时间尺度变化。我们分析了几年的每半小时空气污染和气象时间序列记录,其中已去除了琐碎的季节性和每日周期。我们发现,从亚日时间尺度的约 1.4(良好的自相关性和可预测性)到月到季节时间尺度的 0.5(意味着完全随机性),赫斯特值呈下降趋势。在短时间尺度上,空气污染物的可预测性与气象变量的可预测性一致,但在较长时间尺度上则更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验