School of Physical and Mathematical Sciences, Nanyang Technological University, Nanyang Link, Singapore.
IEEE Trans Vis Comput Graph. 2010 Jul-Aug;16(4):647-62. doi: 10.1109/TVCG.2009.103.
Curvature flow (planar geometric heat flow) has been extensively applied to image processing, computer vision, and material science. To extend the numerical schemes and algorithms of this flow on surfaces is very significant for corresponding motions of curves and images defined on surfaces. In this work, we are interested in the geodesic curvature flow over triangulated surfaces using a level set formulation. First, we present the geodesic curvature flow equation on general smooth manifolds based on an energy minimization of curves. The equation is then discretized by a semi-implicit finite volume method (FVM). For convenience of description, we call the discretized geodesic curvature flow as dGCF. The existence and uniqueness of dGCF are discussed. The regularization behavior of dGCF is also studied. Finally, we apply our dGCF to three problems: the closed-curve evolution on manifolds, the discrete scale-space construction, and the edge detection of images painted on triangulated surfaces. Our method works for compact triangular meshes of arbitrary geometry and topology, as long as there are no degenerate triangles. The implementation of the method is also simple.
曲率流(平面几何热流)已广泛应用于图像处理、计算机视觉和材料科学。将该流的数值方法和算法扩展到曲面,对于定义在曲面上的曲线和图像的相应运动非常重要。在这项工作中,我们感兴趣的是使用水平集公式的三角化曲面上的测地曲率流。首先,我们基于曲线的能量最小化给出了一般光滑流形上的测地曲率流方程。然后,通过半隐式有限体积法(FVM)对其进行离散化。为方便描述,我们将离散的测地曲率流称为 dGCF。讨论了 dGCF 的存在性和唯一性。还研究了 dGCF 的正则化行为。最后,我们将我们的 dGCF 应用于三个问题:流形上的闭合曲线演化、离散尺度空间构建和三角化曲面上绘制的图像的边缘检测。我们的方法适用于具有任意几何形状和拓扑结构的紧凑三角形网格,只要不存在退化三角形。该方法的实现也很简单。