Suppr超能文献

使用正则化加权最小二乘估计确定横向调制变迹函数

Determination of lateral modulation apodization functions using a regularized, weighted least squares estimation.

作者信息

Sumi Chikayoshi

机构信息

Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-Cho, Chiyoda-Ku, Tokyo 102-8554, Japan.

出版信息

Int J Biomed Imaging. 2010;2010:635294. doi: 10.1155/2010/635294. Epub 2010 May 9.

Abstract

Recently, work in this group has focused on the lateral cosine modulation method (LCM) which can be used for next-generation ultrasound (US) echo imaging and tissue displacement vector/strain tensor measurements (blood, soft tissues, etc.). For instance, in US echo imaging, a high lateral spatial resolution as well as a high axial spatial resolution can be obtained, and in tissue displacement vector measurements, accurate measurements of lateral tissue displacements as well as of axial tissue displacements can be realized. For an optimal determination of an apodization function for the LCM method, the regularized, weighted minimum-norm least squares (WMNLSs) estimation method is presented in this study. For designed Gaussian-type point spread functions (PSFs) with lateral modulation as an example, the regularized WMNLS estimation in simulations yields better approximations of the designed PSFs having wider lateral bandwidths than a Fraunhofer approximation and a singular-value decomposition (SVD). The usefulness of the regularized WMNLS estimation for the determination of apodization functions is demonstrated.

摘要

最近,该团队的工作集中在横向余弦调制方法(LCM)上,该方法可用于下一代超声(US)回波成像以及组织位移矢量/应变张量测量(血液、软组织等)。例如,在超声回波成像中,可以获得高横向空间分辨率以及高轴向空间分辨率,并且在组织位移矢量测量中,可以实现对横向组织位移以及轴向组织位移的精确测量。为了优化确定LCM方法的变迹函数,本研究提出了正则化加权最小范数最小二乘(WMNLSs)估计方法。以设计的具有横向调制的高斯型点扩散函数(PSF)为例,模拟中的正则化WMNLS估计比夫琅禾费近似和奇异值分解(SVD)能更好地逼近具有更宽横向带宽的设计PSF。证明了正则化WMNLS估计在确定变迹函数方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f498/2868189/94f9ec17678a/IJBI2010-635294.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验