Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
Biochemistry. 2010 Jun 22;49(24):5066-73. doi: 10.1021/bi100272g.
The mechanism of wild-type and R37A mutant Pseudomonas dacunhae aspartate beta-decarboxylase (ABDC) was studied by rapid-scanning stopped-flow spectrophotometry. Mixing wild-type ABDC with 50 mM disodium l-Asp resulted in the formation of a 325 nm absorption peak within the dead time of the stopped-flow instrument, likely the ketimine of pyridoxamine 5'-phosphate and oxaloacetate or pyruvate. After consumption of the l-Asp, the 360 nm feature of the resting enzyme was restored. Thus, the 325 nm species is a catalytically competent intermediate. In contrast, mixing wild-type ABDC with the disodium salt of either threo- or erythro-beta-hydroxy-dl-Asp at 50 mM resulted in a much slower formation of the 325 nm complex, with an apparent rate constant of approximately 1 or 0.006 s(-1), respectively. When wild-type ABDC is mixed with disodium succinate, a nonreactive analogue of l-Asp, formation of a new peak at 425 nm is observed. The apparent rate constant for formation of the 425 nm band exhibits a hyperbolic dependence on succinate concentration, showing that there is a rapid binding equilibrium, followed by a slower reaction in which the internal aldimine is protonated on the Schiff base N. Hydrostatic pressure shifts the spectrum from the 425 nm form to the 360 nm form, consistent with a conformational change. It is likely that the binding of substrate or analogues induces a conformational change that releases strain in the Lys pyridoxal 5'-phosphate Schiff base and increases the pK(a), resulting in protonation of the Schiff base to initiate transaldimination. Mixing of R37A mutant ABDC with 50 mM l-Asp also results in the formation of the 325 nm complex, but with an apparent rate constant of 0.2 s(-1), at least 5000-fold slower than the rate of wild-type ABDC. In contrast to wild-type ABDC, R37A ABDC shows no change in the cofactor spectrum when mixed with disodium succinate. These results suggest that Arg-37, a conserved active site residue in ABDC, plays a role in modulating the pK(a) of the pyridoxal 5'-phosphate complexes during catalysis.
利用快速扫描停流分光光度法研究了野生型和 R37A 突变型假单胞菌天门冬氨酸β-脱羧酶(ABDC)的作用机制。将野生型 ABDC 与 50mM 二钠 L-Asp 混合,在停流仪器的死时间内形成 325nm 吸收峰,可能是吡哆醛 5'-磷酸和草酰乙酸或丙酮酸的亚氨基酮。消耗完 L-Asp 后,酶的 360nm 特征得到恢复。因此,325nm 种是一种具有催化能力的中间产物。相比之下,将野生型 ABDC 与 50mM 的 threo-或 erythro-β-羟基-dl-Asp 的二钠盐混合,形成 325nm 络合物的速度要慢得多,表观速率常数分别约为 1 或 0.006s(-1)。当野生型 ABDC 与非反应性 L-Asp 类似物琥珀酸钠混合时,在 425nm 处观察到新峰的形成。形成 425nm 带的表观速率常数对琥珀酸钠浓度呈双曲线依赖性,表明存在快速结合平衡,随后是较慢的反应,其中内部亚胺在席夫碱 N 上质子化。静水压力将光谱从 425nm 形式转变为 360nm 形式,与构象变化一致。很可能是底物或类似物的结合诱导构象变化,从而释放赖氨酸吡哆醛 5'-磷酸席夫碱的应变,并增加 pK(a),导致席夫碱质子化以启动转亚胺化。将 R37A 突变型 ABDC 与 50mM L-Asp 混合也会形成 325nm 络合物,但表观速率常数为 0.2s(-1),至少比野生型 ABDC 慢 5000 倍。与野生型 ABDC 不同,R37A ABDC 与琥珀酸钠混合时辅酶光谱没有变化。这些结果表明,在催化过程中,ABDC 中的保守活性位点残基 Arg-37 发挥作用,调节吡哆醛 5'-磷酸复合物的 pK(a)。