Phillips R S, Sundararaju B, Koushik S V
Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
Biochemistry. 1998 Jun 16;37(24):8783-9. doi: 10.1021/bi980066v.
The reaction of Pseudomonas fluorescens kynureninase with L-kynurenine and L-alanine has been examined using rapid-scanning stopped-flow spectrophotometry. Mixing kynureninase with 0.5 mM L-kynurenine results in formation of a quinonoid intermediate, with lambdamax = 494 nm, within the dead time (ca. 2 ms) of the stopped-flow mixer. This intermediate then decays rapidly, with k = 743 s-1, and this rate constant is reduced to 347 s-1 in [2H]H2O, suggesting that protonation of this intermediate by a solvent exchangeable proton takes place. Rapid quench experiments demonstrate that covalent changes in the cofactor occur, as pyridoxal 5'-phosphate is converted to pyridoxamine 5'-phosphate in about 30 mol % within 5 ms after mixing. Under single turnover conditions in the reaction of kynureninase with l-kynurenine, a transient shoulder absorbing at 335 nm is observed that may be a pyruvate ketimine intermediate. In contrast, the reaction of kynureninase with 0.5 mM l-kynurenine in the presence of 10 mM benzaldehyde results in the formation of a quinonoid intermediate (k = 67.4 s-1) with a very strong absorbance peak at 496 nm. The reaction of L-alanine with kynureninase exhibits the rapid formation (386 s-1 at 0.1 M) of an external aldimine intermediate absorbing at 420 nm, followed by slower formation of a quinonoid intermediate with a peak at 500 nm (k = 2.5 s-1). The 420 nm peak then decays slowly with concomitant formation of a peak at 320 nm corresponding to a pyruvate ketimine. These data demonstrate that quinonoid and ketimine intermediates are catalytically competent in the reaction mechanism of kynureninase, and provide additional support for our proposed mechanism for kynureninase from steady-state kinetic studies [Koushik, S. V., Sundararaju, B., and Phillips, R. S. Biochemistry 1998, 37, 1376-1382].
利用快速扫描停流分光光度法研究了荧光假单胞菌犬尿氨酸酶与L-犬尿氨酸和L-丙氨酸的反应。将犬尿氨酸酶与0.5 mM L-犬尿氨酸混合,在停流混合器的死时间(约2毫秒)内会形成一个醌类中间体,其最大吸收波长λmax = 494 nm。然后该中间体迅速衰变,速率常数k = 743 s-1,在[2H]H2O中该速率常数降至347 s-1,这表明该中间体通过一个可与溶剂交换的质子发生了质子化。快速淬灭实验表明,辅因子发生了共价变化,因为在混合后5毫秒内约30 mol%的磷酸吡哆醛5'-磷酸转化为了磷酸吡哆胺5'-磷酸。在犬尿氨酸酶与L-犬尿氨酸的反应中,在单周转条件下,观察到一个在335 nm处吸收的瞬态肩峰,可能是丙酮酸酮亚胺中间体。相比之下,在10 mM苯甲醛存在下,犬尿氨酸酶与0.5 mM L-犬尿氨酸的反应会形成一个醌类中间体(k = 67.4 s-1),在496 nm处有一个非常强的吸收峰。L-丙氨酸与犬尿氨酸酶的反应表现为快速形成(在0.1 M时为386 s-1)一个在420 nm处吸收的外部醛亚胺中间体,随后较慢地形成一个在500 nm处有峰的醌类中间体(k = 2.5 s-1)。420 nm处的峰随后缓慢衰变,同时形成一个在320 nm处对应于丙酮酸酮亚胺的峰。这些数据表明醌类和酮亚胺中间体在犬尿氨酸酶的反应机制中具有催化活性,并为我们从稳态动力学研究中提出的犬尿氨酸酶机制提供了额外支持[Koushik, S. V., Sundararaju, B., and Phillips, R. S. Biochemistry 1998, 37, 1376 - 1382]。