Friedrich Miescher Institute for Biomedical Research, PO Box 2543, 4002 Basel, Switzerland.
Cell. 2010 May 14;141(4):618-31. doi: 10.1016/j.cell.2010.03.039.
Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.
适应不同水平的光照是视网膜功能的核心。在这里,我们证明 miR-183/96/182 簇、miR-204 和 miR-211 的水平受小鼠视网膜中不同光照水平的调节。这些 microRNAs 的浓度在暗适应期间下调,在光适应的视网膜中上调,快速衰减和转录增加是各自变化的原因。我们确定电压依赖性谷氨酸转运体 Slc1a1 是光感受器细胞中 miR-183/96/182 的靶标之一。我们发现视网膜神经元中的 microRNAs 比非神经元细胞中的 microRNAs 衰减得快得多。这种高周转率也是海马和皮质神经元以及体外分化的 ES 细胞神经元中 microRNAs 的特征。阻断活性降低神经元细胞中 microRNAs 的周转率,而谷氨酸刺激则加速其周转率。我们的结果表明,神经元中的 microRNA 代谢高于大多数其他细胞类型,并与神经元活动有关。