Suppr超能文献

细胞建模:实验和模拟以开发 G 蛋白对哺乳动物心房细胞毒蕈碱 K+通道的生理模型。

Cellular modelling: experiments and simulation to develop a physiological model of G-protein control of muscarinic K+ channels in mammalian atrial cells.

机构信息

Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.

出版信息

Philos Trans A Math Phys Eng Sci. 2010 Jun 28;368(1921):2983-3000. doi: 10.1098/rsta.2010.0093.

Abstract

The first model of G-protein-K(ACh) channel interaction was developed 14 years ago and then expanded to include both the receptor-G-protein cycle and G-protein-K(ACh) channel interaction. The G-protein-K(ACh) channel interaction used the Monod-Wyman-Changeux allosteric model with the idea that one K(ACh) channel is composed of four subunits, each of which binds one active G-protein subunit (G(betagamma)). The receptor-G-protein cycle used a previous model to account for the steady-state relationship between K(ACh) current and intracellular guanosine-5-triphosphate at various extracellular concentrations of acetylcholine (ACh). However, simulations of the activation and deactivation of K(ACh) current upon ACh application or removal were much slower than experimental results. This clearly indicates some essential elements were absent from the model. We recently found that regulators of G-protein signalling are involved in the control of K(ACh) channel activity. They are responsible for the voltage-dependent relaxation behaviour of K(ACh) channels. Based on this finding, we have improved the receptor-G-protein cycle model to reproduce the relaxation behaviour. With this modification, the activation and deactivation of K(ACh) current in the model are much faster and now fall within physiological ranges.

摘要

G 蛋白-K(ACh) 通道相互作用的第一个模型是 14 年前开发的,然后扩展到包括受体-G 蛋白循环和 G 蛋白-K(ACh) 通道相互作用。G 蛋白-K(ACh) 通道相互作用使用 Monod-Wyman-Changeux 变构模型,其假设一个 K(ACh) 通道由四个亚基组成,每个亚基结合一个活性 G 蛋白亚基(G(betagamma))。受体-G 蛋白循环使用以前的模型来解释在不同的细胞外乙酰胆碱 (ACh) 浓度下,K(ACh) 电流和细胞内鸟苷-5-三磷酸之间的稳态关系。然而,ACh 应用或去除时 K(ACh) 电流的激活和失活的模拟比实验结果慢得多。这清楚地表明模型中缺少一些基本要素。我们最近发现,G 蛋白信号转导调节剂参与 K(ACh) 通道活性的控制。它们负责 K(ACh) 通道的电压依赖性弛豫行为。基于这一发现,我们改进了受体-G 蛋白循环模型以再现弛豫行为。通过这种修改,模型中 K(ACh) 电流的激活和失活速度更快,现在处于生理范围内。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验