Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan, ROC.
IEEE/ACM Trans Comput Biol Bioinform. 2010 Jul-Sep;7(3):412-20. doi: 10.1109/TCBB.2010.45.
The interactor normalization task (INT) is to identify genes that play the interactor role in protein-protein interactions (PPIs), to map these genes to unique IDs, and to rank them according to their normalized confidence. INT has two subtasks: gene normalization (GN) and interactor ranking. The main difficulties of INT GN are identifying genes across species and using full papers instead of abstracts. To tackle these problems, we developed a multistage GN algorithm and a ranking method, which exploit information in different parts of a paper. Our system achieved a promising AUC of 0.43471. Using the multistage GN algorithm, we have been able to improve system performance (AUC) by 1.719 percent compared to a one-stage GN algorithm. Our experimental results also show that with full text, versus abstract only, INT AUC performance was 22.6 percent higher.
相互作用标准化任务 (INT) 是识别在蛋白质-蛋白质相互作用 (PPIs) 中扮演相互作用角色的基因,将这些基因映射到唯一的 ID,并根据其标准化置信度对它们进行排名。INT 有两个子任务:基因标准化 (GN) 和相互作用者排名。INT GN 的主要困难是识别跨物种的基因和使用全文而不是摘要。为了解决这些问题,我们开发了一种多阶段 GN 算法和一种排名方法,利用了论文不同部分的信息。我们的系统取得了令人鼓舞的 AUC 为 0.43471。使用多阶段 GN 算法,与单阶段 GN 算法相比,我们的系统性能 (AUC) 提高了 1.719%。我们的实验结果还表明,与仅使用摘要相比,使用全文时,INT AUC 性能提高了 22.6%。