Camellin Massimo, Arba Mosquera Samuel
J Refract Surg. 2011 Feb;27(2):135-46. doi: 10.3928/1081597X-20100428-03. Epub 2010 May 3.
To evaluate the effective optical zone (the part of the ablation that receives full correction) among eyes that underwent laser epithelial keratomileusis (LASEK)/epi-LASEK treatments for myopic astigmatism.
Twenty LASEK/epi-LASEK treatments with a mean spherical equivalent refraction (SE) of -5.49±2.35 diopters (D) performed using the SCHWIND AMARIS system were retrospectively evaluated at 6-month follow-up. In all cases, pre- and postoperative corneal wavefront analyses were performed with the Keratron Scout (OPTIKON 2000). Effective optical zone values were evaluated from the changes of root-mean-square (RMS) of higher order wavefront aberration (ΔRMSho), spherical aberration (ΔSphAb), and RMS of the change of higher order wavefront aberration (RMS[ΔHOAb]). Correlations of effective optical zone with planned optical zone and SE correction were analyzed using a bilinear function as well as calculations of the isometric lines for which effective optical zone equals planned optical zone and of the nomogram planned optical zone to achieve an intended effective optical zone.
At 6 months, SE was -0.05±0.43 D, with 90% of eyes within ±0.50 D. Mean higher order wavefront aberration RMS increased 0.12 μm, spherical aberration 0.09 μm, and coma 0.04 μm after treatment (6-mm diameter). Mean planned optical zone was 6.76±0.25 mm, whereas mean EOZ(ΔRMSho) was 6.74±0.66 mm (bilinear correlation P<.005), EOZ(ΔSphAb) was 6.83±0.58 mm (bilinear correlation P<.0001), and EOZ(RMS(ΔHOAb)) was 6.42±0.58 mm (significantly smaller, P<.05; bilinear correlation P<.0005).
The EOZ(ΔRMSho) and EOZ(ΔSphAb) were similar to the planned optical zone, whereas EOZ(RMS(ΔHOAb)) was significantly smaller. Differences between effective optical zone and planned optical zone were larger for smaller planned optical zone or larger SE corrections. Planned optical zones >6.75 mm result in effective optical zones at least as large as planned optical zones. For optical zones <6.75 mm, a nomogram should be applied.
评估接受准分子激光上皮下角膜磨镶术(LASEK)/上皮瓣准分子激光角膜原位磨镶术(epi-LASEK)治疗近视散光的眼睛中的有效光学区(接受完全矫正的消融部分)。
回顾性评估使用SCHWIND AMARIS系统进行的20例LASEK/epi-LASEK治疗,平均等效球镜度(SE)为-5.49±2.35屈光度(D),随访6个月。所有病例均使用Keratron Scout(OPTIKON 2000)进行术前和术后角膜波前分析。根据高阶波前像差的均方根(ΔRMSho)、球差(ΔSphAb)和高阶波前像差变化的均方根(RMS[ΔHOAb])的变化评估有效光学区值。使用双线性函数分析有效光学区与计划光学区和SE矫正的相关性,并计算有效光学区等于计划光学区的等距线以及实现预期有效光学区的列线图计划光学区。
6个月时,SE为-0.05±0.43 D,90%的眼睛在±0.50 D范围内。治疗后(直径6 mm),平均高阶波前像差RMS增加0.12μm,球差增加0.09μm,彗差增加0.04μm。平均计划光学区为6.76±0.25 mm,而平均有效光学区(ΔRMSho)为6.74±0.66 mm(双线性相关性P<.005),有效光学区(ΔSphAb)为6.83±0.58 mm(双线性相关性P<.0001),有效光学区(RMS(ΔHOAb))为6.42±0.58 mm(明显较小,P<.05;双线性相关性P<.0005)。
有效光学区(ΔRMSho)和有效光学区(ΔSphAb)与计划光学区相似,而有效光学区(RMS(ΔHOAb))明显较小。对于较小的计划光学区或较大的SE矫正,有效光学区与计划光学区之间的差异更大。计划光学区>6.75 mm可使有效光学区至少与计划光学区一样大。对于光学区<6.75 mm,应应用列线图。