Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, USA.
Biochemistry. 2010 Jun 29;49(25):5225-35. doi: 10.1021/bi100428x.
Protein modification by methylation is important in cellular function. We show here that the Saccharomyces cerevisiae YBR261C/TAE1 gene encodes an N-terminal protein methyltransferase catalyzing the modification of two ribosomal protein substrates, Rpl12ab and Rps25a/Rps25b. The YBR261C/Tae1 protein is conserved across eukaryotes; all of these proteins share sequence similarity with known seven beta-strand class I methyltransferases. Wild-type yeast cytosol and mouse heart cytosol catalyze the methylation of a synthetic peptide (PPKQQLSKY) that contains the first eight amino acids of the processed N-terminus of Rps25a/Rps25b. However, no methylation of this peptide is seen in yeast cytosol from a DeltaYBR261C/tae1 deletion strain. Yeast YBR261C/TAE1 and the human orthologue METTL11A genes were expressed as fusion proteins in Escherichia coli and were shown to be capable of stoichiometrically dimethylating the N-terminus of the synthetic peptide. Furthermore, the YBR261C/Tae1 and METTL11A recombinant proteins methylate variants of the synthetic peptide containing N-terminal alanine and serine residues. However, methyltransferase activity is largely abolished when the proline residue in position 2 or the lysine residue in position 3 is substituted. Thus, the methyltransferases described here specifically recognize the N-terminal X-Pro-Lys sequence motif, and we suggest designating the yeast enzyme Ntm1 and the human enzyme NTMT1. These enzymes may account for nearly all previously described eukaryotic protein N-terminal methylation reactions. A number of other yeast and human proteins also share the recognition motif and may be similarly modified. We conclude that protein X-Pro-Lys N-terminal methylation reactions catalyzed by the enzymes described here may be widespread in nature.
蛋白质的甲基化修饰对于细胞功能非常重要。我们在这里展示,酿酒酵母 YBR261C/TAE1 基因编码一种 N 端蛋白甲基转移酶,可催化两种核糖体蛋白底物,Rpl12ab 和 Rps25a/Rps25b 的修饰。YBR261C/Tae1 蛋白在真核生物中是保守的;所有这些蛋白质都与已知的七-β-链类 I 甲基转移酶具有序列相似性。野生型酵母胞质和鼠心胞质催化合成肽(PPKQQLSKY)的甲基化,该肽包含 Rps25a/Rps25b 加工 N 端的前 8 个氨基酸。然而,在ΔYBR261C/tae1 缺失菌株的酵母胞质中,没有观察到该肽的甲基化。酵母 YBR261C/TAE1 和人同源物 METTL11A 基因在大肠杆菌中表达为融合蛋白,并被证明能够对合成肽的 N 端进行化学计量的二甲基化。此外,YBR261C/Tae1 和 METTL11A 重组蛋白甲基化含有 N 端丙氨酸和丝氨酸残基的合成肽变体。然而,当第 2 位的脯氨酸或第 3 位的赖氨酸残基被取代时,甲基转移酶活性大大降低。因此,这里描述的甲基转移酶特异性识别 N 端 X-Pro-Lys 序列基序,我们建议将酵母酶 Ntm1 和人酶 NTMT1 命名为。这些酶可能解释了几乎所有先前描述的真核生物蛋白质 N 端甲基化反应。许多其他酵母和人类蛋白也共享该识别基序,可能也被类似修饰。我们得出结论,这里描述的酶催化的蛋白质 X-Pro-Lys N 端甲基化反应可能在自然界中广泛存在。