Barrett Adam B, Barnett Lionel, Seth Anil K
Sackler Centre for Consciousness Science, School of Informatics, University of Sussex, Brighton BN1 9QJ, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 1):041907. doi: 10.1103/PhysRevE.81.041907. Epub 2010 Apr 12.
Granger causality analysis is a popular method for inference on directed interactions in complex systems of many variables. A shortcoming of the standard framework for Granger causality is that it only allows for examination of interactions between single (univariate) variables within a system, perhaps conditioned on other variables. However, interactions do not necessarily take place between single variables but may occur among groups or "ensembles" of variables. In this study we establish a principled framework for Granger causality in the context of causal interactions among two or more multivariate sets of variables. Building on Geweke's seminal 1982 work, we offer additional justifications for one particular form of multivariate Granger causality based on the generalized variances of residual errors. Taken together, our results support a comprehensive and theoretically consistent extension of Granger causality to the multivariate case. Treated individually, they highlight several specific advantages of the generalized variance measure, which we illustrate using applications in neuroscience as an example. We further show how the measure can be used to define "partial" Granger causality in the multivariate context and we also motivate reformulations of "causal density" and "Granger autonomy." Our results are directly applicable to experimental data and promise to reveal new types of functional relations in complex systems, neural and otherwise.
格兰杰因果关系分析是一种用于推断多变量复杂系统中定向相互作用的常用方法。格兰杰因果关系标准框架的一个缺点是,它只允许考察系统内单个(单变量)变量之间的相互作用,可能以其他变量为条件。然而,相互作用不一定发生在单个变量之间,也可能发生在变量组或“总体”之间。在本研究中,我们在两个或多个多变量变量集之间的因果相互作用背景下,建立了一个有原则的格兰杰因果关系框架。基于盖韦克1982年的开创性工作,我们基于残差误差的广义方差,为多变量格兰杰因果关系的一种特定形式提供了额外的依据。综合来看,我们的结果支持将格兰杰因果关系全面且理论上一致地扩展到多变量情况。单独来看,它们突出了广义方差度量的几个特定优势,我们以神经科学中的应用为例进行说明。我们还展示了该度量如何用于在多变量背景下定义“部分”格兰杰因果关系,并且我们还推动了“因果密度”和“格兰杰自主性”的重新表述。我们的结果可直接应用于实验数据,并有望揭示复杂系统(包括神经和其他系统)中新型的功能关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010-4
Phys Rev Lett. 2009-12-4
Biol Cybern. 2011-12
Neuroimage. 2014-10-15
J Neurosci Methods. 2015-4-30
J Neurosci Methods. 2013-11-5
Multivariate Behav Res. 2016
Phys Rev E Stat Nonlin Soft Matter Phys. 2014-6
Entropy (Basel). 2024-11-28
IEEE Open J Eng Med Biol. 2024-3-8
Front Netw Physiol. 2023-10-13
Front Netw Physiol. 2023-5-31