Delft Institute of Applied Mathematics, Delft University of Technology, The Netherlands.
Phys Rev Lett. 2010 Apr 9;104(14):145703. doi: 10.1103/PhysRevLett.104.145703.
A popular theory of self-organized criticality relates driven dissipative systems to systems with conservation. This theory predicts that the stationary density of the Abelian sandpile model equals the threshold density of the fixed-energy sandpile. We refute this prediction for a wide variety of underlying graphs, including the square grid. Driven dissipative sandpiles continue to evolve even after reaching criticality. This result casts doubt on the validity of using fixed-energy sandpiles to explore the critical behavior of the Abelian sandpile model at stationarity.
自组织临界性的一个流行理论将驱动耗散系统与具有守恒性的系统联系起来。该理论预测,阿贝尔沙堆模型的静态密度等于固定能量沙堆的阈值密度。我们对各种基础图,包括正方形网格,都反驳了这一预测。驱动耗散沙堆在达到临界状态后仍继续演化。这一结果使得使用固定能量沙堆来探索阿贝尔沙堆模型在平稳状态下的临界行为的有效性受到怀疑。