Theoretical Division, Los Alamos National Laboratory, MS-B213, Los Alamos, New Mexico 87545, USA.
Phys Rev Lett. 2010 Apr 23;104(16):160404. doi: 10.1103/PhysRevLett.104.160404. Epub 2010 Apr 22.
We use the stochastic Gross-Pitaevskii equation to study dynamics of Bose-Einstein condensation. We show that cooling into a Bose-Einstein condensate (BEC) can create solitons with density given by the cooling rate and by the critical exponents of the transition. Thus, counting solitons left in its wake should allow one to determine the critical exponents z and nu for a BEC phase transition. The same information can be extracted from two-point correlation functions.
我们使用随机 Gross-Pitaevskii 方程来研究玻色-爱因斯坦凝聚的动力学。我们表明,冷却到玻色-爱因斯坦凝聚(BEC)中可以产生具有冷却速率和相变临界指数决定的密度的孤子。因此,计算其尾迹中留下的孤子数量应该可以确定 BEC 相变的临界指数 z 和 nu。同样的信息也可以从两点相关函数中提取出来。