Suppr超能文献

利用孤子探究玻色-爱因斯坦凝聚体中相互作用的非局域性。

Probing non-locality of interactions in a Bose-Einstein condensate using solitons.

作者信息

Pendse Abhijit, Bhattacharyay A

机构信息

Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India.

出版信息

J Phys Condens Matter. 2018 Nov 14;30(45):455602. doi: 10.1088/1361-648X/aae33f.

Abstract

We consider a Bose-Einstein condensate (BEC) with non-local inter-particle interactions. The local Gross-Pitaevskii (GP) equation is valid for the gas parameter [Formula: see text], but for [Formula: see text], the BEC is described by a modified GP equation (MGPE). We study the exact solutions of the MGPE describing bright and dark solitons. It turns out that the width of these non-local solitons has qualitatively similar behaviour as the modified healing length due to the non-local interactions of the MGPE. We also study the effect of the non-locality and gas parameter (ν) on the stability of the solitons using the Vakhitov-Kolokolov (VK) stability criterion. We show that these soliton solutions are stable according to the VK criterion. Further, the stability of these soliton solutions gets enhanced due to the non-locality of interactions.

摘要

我们考虑具有非局域粒子间相互作用的玻色 - 爱因斯坦凝聚体(BEC)。局部的格罗斯 - 皮塔耶夫斯基(GP)方程对于气体参数[公式:见文本]是有效的,但对于[公式:见文本],BEC由一个修正的GP方程(MGPE)描述。我们研究描述亮孤子和暗孤子的MGPE的精确解。结果表明,由于MGPE的非局域相互作用,这些非局域孤子的宽度与修正的愈合长度具有定性相似的行为。我们还使用瓦赫托夫 - 科洛科洛夫(VK)稳定性准则研究了非局域性和气体参数(ν)对孤子稳定性的影响。我们表明,根据VK准则,这些孤子解是稳定的。此外,由于相互作用的非局域性,这些孤子解的稳定性得到增强。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验