Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA.
Phys Rev Lett. 2010 May 7;104(18):184505. doi: 10.1103/PhysRevLett.104.184505.
Holographic measurements of the clustering of electrically charged, inertial particles in homogenous and isotropic turbulent flow reveal novel particle dynamics. When particles are identically charged, Coulomb repulsion introduces a length scale below which inertial clustering is suppressed such that the radial distribution function (RDF) mimics that of a nonideal gas. The result is described with a Fokker-Planck framework modeling inertial clustering as a diffusion-drift process modified to include Coulomb interaction. The peak in the RDF is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged "drift" velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The resulting functional form of the RDF matches the measurements closely, providing support for the drift-diffusion description of particle clustering.
全息测量表明,在均匀各向同性湍流中,带点惯性粒子的聚集揭示了新的粒子动力学。当粒子带相同电荷时,库仑斥力会引入一个长度尺度,低于该尺度时,惯性聚集会受到抑制,从而使得径向分布函数(RDF)类似于非理想气体。这一结果可以用福克-普朗克框架来描述,该框架将惯性聚集建模为一种扩散-漂移过程,该过程经过修正以包含库仑相互作用。RDF 的峰值很好地由在库仑斥力下颗粒的终端速度与由于有限的颗粒惯性而导致的非均匀采样流应变和旋转所获得的时间平均“漂移”速度之间的平衡来预测。RDF 的这种函数形式与测量结果非常吻合,为颗粒聚集的漂移-扩散描述提供了支持。