Suppr超能文献

人类功能蛋白质相互作用网络及其在癌症数据分析中的应用。

A human functional protein interaction network and its application to cancer data analysis.

机构信息

Ontario Institute for Cancer Research, MaRS Centre, South Tower, 101 College Street, Suite 800, Toronto, ON M5G 0A3, Canada.

出版信息

Genome Biol. 2010;11(5):R53. doi: 10.1186/gb-2010-11-5-r53. Epub 2010 May 19.

Abstract

BACKGROUND

One challenge facing biologists is to tease out useful information from massive data sets for further analysis. A pathway-based analysis may shed light by projecting candidate genes onto protein functional relationship networks. We are building such a pathway-based analysis system.

RESULTS

We have constructed a protein functional interaction network by extending curated pathways with non-curated sources of information, including protein-protein interactions, gene coexpression, protein domain interaction, Gene Ontology (GO) annotations and text-mined protein interactions, which cover close to 50% of the human proteome. By applying this network to two glioblastoma multiforme (GBM) data sets and projecting cancer candidate genes onto the network, we found that the majority of GBM candidate genes form a cluster and are closer than expected by chance, and the majority of GBM samples have sequence-altered genes in two network modules, one mainly comprising genes whose products are localized in the cytoplasm and plasma membrane, and another comprising gene products in the nucleus. Both modules are highly enriched in known oncogenes, tumor suppressors and genes involved in signal transduction. Similar network patterns were also found in breast, colorectal and pancreatic cancers.

CONCLUSIONS

We have built a highly reliable functional interaction network upon expert-curated pathways and applied this network to the analysis of two genome-wide GBM and several other cancer data sets. The network patterns revealed from our results suggest common mechanisms in the cancer biology. Our system should provide a foundation for a network or pathway-based analysis platform for cancer and other diseases.

摘要

背景

生物学家面临的一个挑战是从大量数据集提取有用信息以进行进一步分析。基于途径的分析可以通过将候选基因投射到蛋白质功能关系网络上来提供启示。我们正在构建这样一个基于途径的分析系统。

结果

我们通过扩展经过精心整理的途径,结合非精心整理的信息来源,构建了一个蛋白质功能相互作用网络,包括蛋白质-蛋白质相互作用、基因共表达、蛋白质结构域相互作用、基因本体 (GO) 注释和文本挖掘的蛋白质相互作用,这些信息涵盖了近 50%的人类蛋白质组。通过将该网络应用于两个胶质母细胞瘤多形性 (GBM) 数据集,并将癌症候选基因投射到网络上,我们发现大多数 GBM 候选基因形成一个簇,比随机预期的更接近,并且大多数 GBM 样本在两个网络模块中都有序列改变的基因,一个主要包含其产物定位于细胞质和质膜的基因,另一个包含核内基因产物的基因。这两个模块都高度富含已知的癌基因、肿瘤抑制基因和参与信号转导的基因。在乳腺癌、结直肠癌和胰腺癌中也发现了类似的网络模式。

结论

我们在专家整理的途径基础上构建了一个高度可靠的功能相互作用网络,并将该网络应用于两个全基因组 GBM 和其他几个癌症数据集的分析。我们从结果中揭示的网络模式表明癌症生物学中存在共同的机制。我们的系统应为癌症和其他疾病的网络或途径分析平台提供基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4635/2898064/673ce89270df/gb-2010-11-5-r53-1.jpg

相似文献

1
A human functional protein interaction network and its application to cancer data analysis.
Genome Biol. 2010;11(5):R53. doi: 10.1186/gb-2010-11-5-r53. Epub 2010 May 19.
2
Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma.
Mol Med Rep. 2018 Nov;18(5):4185-4196. doi: 10.3892/mmr.2018.9411. Epub 2018 Aug 21.
4
Identification of potential crucial genes and molecular mechanisms in glioblastoma multiforme by bioinformatics analysis.
Mol Med Rep. 2020 Aug;22(2):859-869. doi: 10.3892/mmr.2020.11160. Epub 2020 May 20.
5
Extending pathways and processes using molecular interaction networks to analyse cancer genome data.
BMC Bioinformatics. 2010 Dec 13;11:597. doi: 10.1186/1471-2105-11-597.
7
Automated network analysis identifies core pathways in glioblastoma.
PLoS One. 2010 Feb 12;5(2):e8918. doi: 10.1371/journal.pone.0008918.
8
Network-based inference framework for identifying cancer genes from gene expression data.
Biomed Res Int. 2013;2013:401649. doi: 10.1155/2013/401649. Epub 2013 Sep 1.
9
Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
BMC Syst Biol. 2013;7 Suppl 2(Suppl 2):S4. doi: 10.1186/1752-0509-7-S2-S4. Epub 2013 Oct 14.
10
Construction of lncRNA-associated ceRNA networks to identify prognostic lncRNA biomarkers for glioblastoma.
J Cell Biochem. 2020 Jul;121(7):3502-3515. doi: 10.1002/jcb.29625. Epub 2020 Apr 10.

引用本文的文献

1
Multi-proteomic profiling of the varicella-zoster virus-host interface reveals host susceptibilities to severe infection.
Nat Microbiol. 2025 Aug;10(8):2048-2072. doi: 10.1038/s41564-025-02068-7. Epub 2025 Jul 30.
2
Genetic variations and recurrence in stage III Korean colorectal cancer: Insights from tumor-only mutation analysis.
PLoS One. 2025 May 23;20(5):e0323302. doi: 10.1371/journal.pone.0323302. eCollection 2025.
3
Shared host genetic landscape of respiratory viral infection.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2414202122. doi: 10.1073/pnas.2414202122. Epub 2025 May 15.
5
Multiomics of Aging and Aging-Related Diseases.
Int J Mol Sci. 2024 Dec 21;25(24):13671. doi: 10.3390/ijms252413671.
6
ECD-CDGI: An efficient energy-constrained diffusion model for cancer driver gene identification.
PLoS Comput Biol. 2024 Aug 30;20(8):e1012400. doi: 10.1371/journal.pcbi.1012400. eCollection 2024 Aug.
7
ALLSTAR: Inference of ReliAble CausaL RuLes between Somatic MuTAtions and CanceR Phenotypes.
Bioinformatics. 2024 Jul 22;40(7). doi: 10.1093/bioinformatics/btae449.
8
The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway.
Mol Cell. 2024 Jul 25;84(14):2618-2633.e10. doi: 10.1016/j.molcel.2024.06.031. Epub 2024 Jul 17.
9
AI-based histopathology image analysis reveals a distinct subset of endometrial cancers.
Nat Commun. 2024 Jun 26;15(1):4973. doi: 10.1038/s41467-024-49017-2.

本文引用的文献

1
Automated network analysis identifies core pathways in glioblastoma.
PLoS One. 2010 Feb 12;5(2):e8918. doi: 10.1371/journal.pone.0008918.
2
Ensembl's 10th year.
Nucleic Acids Res. 2010 Jan;38(Database issue):D557-62. doi: 10.1093/nar/gkp972. Epub 2009 Nov 11.
3
A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.
PLoS Genet. 2009 Sep;5(9):e1000642. doi: 10.1371/journal.pgen.1000642. Epub 2009 Sep 11.
4
Comparative analysis of protein-protein interactions in cancer-associated genes.
Genomics Proteomics Bioinformatics. 2009 Jun;7(1-2):25-36. doi: 10.1016/S1672-0229(08)60030-3.
5
Annexins--modulators of EGF receptor signalling and trafficking.
Cell Signal. 2009 Jun;21(6):847-58. doi: 10.1016/j.cellsig.2009.01.031.
6
A GLI1-p53 inhibitory loop controls neural stem cell and tumour cell numbers.
EMBO J. 2009 Mar 18;28(6):663-76. doi: 10.1038/emboj.2009.16. Epub 2009 Feb 12.
7
A factor graph nested effects model to identify networks from genetic perturbations.
PLoS Comput Biol. 2009 Jan;5(1):e1000274. doi: 10.1371/journal.pcbi.1000274. Epub 2009 Jan 30.
8
Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.
PLoS One. 2008;3(12):e3911. doi: 10.1371/journal.pone.0003911. Epub 2008 Dec 15.
9
An empirical framework for binary interactome mapping.
Nat Methods. 2009 Jan;6(1):83-90. doi: 10.1038/nmeth.1280. Epub 2008 Dec 7.
10
Somatic mutations affect key pathways in lung adenocarcinoma.
Nature. 2008 Oct 23;455(7216):1069-75. doi: 10.1038/nature07423.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验