School of Chemistry, University of Sydney, Sydney, Australia.
Biophys J. 2010 May 19;98(10):2290-8. doi: 10.1016/j.bpj.2010.01.038.
Investigations of the E2 --> E1 conformational change of Na(+),K(+)-ATPase from shark rectal gland and pig kidney via the stopped-flow technique have revealed major differences in the kinetics and mechanisms of the two enzymes. Mammalian kidney Na(+),K(+)-ATPase appears to exist in a diprotomeric (alphabeta)(2) state in the absence of ATP, with protein-protein interactions between the alpha-subunits causing an inhibition of the transition, which occurs as a two-step process: E2:E2 --> E2:E1 --> E1:E1. This is evidenced by a biphasicity in the observed kinetics. Binding of ATP to the E1 or E2 states causes the kinetics to become monophasic and accelerate, which can be explained by an ATP-induced dissociation of the diprotomer into separate alphabeta protomers and relief of the preexisting inhibition. In the case of enzyme from shark rectal gland, the observed kinetics are monophasic at all ATP concentrations, indicating a monoprotomeric enzyme; however, an acceleration of the E2 --> E1 transition by ATP still occurs, to a maximum rate constant of 182 (+/- 6) s(-1). This indicates that ATP has two separate mechanisms whereby it accelerates the E2 --> E1 transition of Na(+),K(+)-ATPase alphabeta protomers and (alphabeta)(2) diprotomers.
通过停流技术对鲨鱼直肠腺和猪肾中的 Na(+),K(+)-ATPase 的 E2 --> E1 构象变化进行研究,揭示了两种酶在动力学和机制上的主要差异。哺乳动物肾 Na(+),K(+)-ATPase 在没有 ATP 的情况下似乎以二聚体 (alphabeta)(2) 状态存在,α 亚基之间的蛋白质-蛋白质相互作用导致该转变受到抑制,其发生为两步过程:E2:E2 --> E2:E1 --> E1:E1。这可以通过观察到的动力学中的两相性来证明。ATP 与 E1 或 E2 状态结合会使动力学变为单相并加速,这可以通过 ATP 诱导二聚体解聚为单独的 alphabeta 原聚体并缓解先前存在的抑制来解释。对于来自鲨鱼直肠腺的酶,在所有 ATP 浓度下观察到的动力学都是单相的,表明存在单体酶;然而,ATP 仍然会加速 E2 --> E1 转变,最大速率常数为 182(+/-6)s(-1)。这表明 ATP 有两种独立的机制,通过这两种机制,它可以加速 Na(+),K(+)-ATPase alphabeta 原聚体和 (alphabeta)(2) 二聚体的 E2 --> E1 转变。