Pilotelle-Bunner Anne, Matthews Jacqueline M, Cornelius Flemming, Apell Hans-Jürgen, Sebban Pierre, Clarke Ronald J
School of Chemistry, University of Sydney, Sydney NSW 2006, Australia.
Biochemistry. 2008 Dec 9;47(49):13103-14. doi: 10.1021/bi801593g.
Reported values of the dissociation constant, K(d), of ATP with the E1 conformation of the Na(+),K(+)-ATPase fall in two distinct ranges depending on how it is measured. Equilibrium binding studies yield values of 0.1-0.6 microM, whereas presteady-state kinetic studies yield values of 3-14 microM. It is unacceptable that K(d) varies with the experimental method of its determination. Using simulations of the expected equilibrium behavior for different binding models based on thermodynamic data obtained from isothermal titration calorimetry we show that this apparent discrepancy can be explained in part by the presence in presteady-state kinetic studies of excess Mg(2+) ions, which compete with the enzyme for the available ATP. Another important contributing factor is an inaccurate assumption in the majority of presteady-state kinetic studies of a rapid relaxation of the ATP binding reaction on the time scale of the subsequent phosphorylation. However, these two factors alone are insufficient to explain the previously observed presteady-state kinetic behavior. In addition one must assume that there are two E1-ATP binding equilibria. Because crystal structures of P-type ATPases indicate only a single bound ATP per alpha-subunit, the only explanation consistent with both crystal structural and kinetic data is that the enzyme exists as an (alphabeta)(2) diprotomer, with protein-protein interactions between adjacent alpha-subunits producing two ATP affinities. We propose that in equilibrium measurements the measured K(d) is due to binding of ATP to one alpha-subunit, whereas in presteady-state kinetic studies, the measured apparent K(d) is due to the binding of ATP to both alpha-subunits within the diprotomer.
据报道,ATP与钠钾ATP酶E1构象的解离常数K(d)值因测量方法不同而分为两个不同范围。平衡结合研究得出的值为0.1 - 0.6微摩尔,而稳态前动力学研究得出的值为3 - 14微摩尔。K(d)随其测定的实验方法而变化是不可接受的。基于等温滴定量热法获得的热力学数据,对不同结合模型的预期平衡行为进行模拟,结果表明,这种明显的差异部分可归因于稳态前动力学研究中存在过量的Mg(2+)离子,这些离子与酶竞争可用的ATP。另一个重要的促成因素是,在大多数稳态前动力学研究中,对ATP结合反应在后续磷酸化时间尺度上的快速弛豫存在不准确的假设。然而,仅这两个因素不足以解释先前观察到的稳态前动力学行为。此外,必须假设存在两个E1-ATP结合平衡。由于P型ATP酶的晶体结构表明每个α亚基仅结合一个ATP,与晶体结构和动力学数据均一致的唯一解释是,该酶以(αβ)2二聚体形式存在,相邻α亚基之间的蛋白质-蛋白质相互作用产生两种ATP亲和力。我们提出,在平衡测量中,测得的K(d)是由于ATP与一个α亚基结合,而在稳态前动力学研究中,测得的表观K(d)是由于ATP与二聚体内的两个α亚基结合。