Suppr超能文献

结构-功能干扰及高压对尿酸氧化酶四聚体的解离。

Structure-function perturbation and dissociation of tetrameric urate oxidase by high hydrostatic pressure.

机构信息

Institut de Biologie Structurale J.-P. Ebel UMR 5075 CEA CNRS UJF, Grenoble, France.

出版信息

Biophys J. 2010 May 19;98(10):2365-73. doi: 10.1016/j.bpj.2010.01.058.

Abstract

Structure-function relationships in the tetrameric enzyme urate oxidase were investigated using pressure perturbation. As the active sites are located at the interfaces between monomers, enzyme activity is directly related to the integrity of the tetramer. The effect of hydrostatic pressure on the enzyme was investigated by x-ray crystallography, small-angle x-ray scattering, and fluorescence spectroscopy. Enzymatic activity was also measured under pressure and after decompression. A global model, consistent with all measurements, discloses structural and functional details of the pressure-induced dissociation of the tetramer. Before dissociating, the pressurized protein adopts a conformational substate characterized by an expansion of its substrate binding pocket at the expense of a large neighboring hydrophobic cavity. This substate should be adopted by the enzyme during its catalytic mechanism, where the active site has to accommodate larger intermediates and product. The approach, combining several high-pressure techniques, offers a new (to our knowledge) means of exploring structural and functional properties of transient states relevant to protein mechanisms.

摘要

使用压力扰动研究了四聚体酶尿酸氧化酶的结构-功能关系。由于活性位点位于单体之间的界面处,因此酶活性与四聚体的完整性直接相关。通过 X 射线晶体学、小角度 X 射线散射和荧光光谱法研究了静压对酶的影响。还在压力下和减压后测量了酶活性。与所有测量结果一致的全局模型揭示了四聚体压力诱导解离的结构和功能细节。在解离之前,受压蛋白质采用构象亚基,其特征是底物结合口袋扩张,而代价是大的相邻疏水腔。该亚基应该在酶的催化机制中被采用,其中活性位点必须容纳更大的中间体和产物。该方法结合了几种高压技术,为探索与蛋白质机制相关的瞬态状态的结构和功能特性提供了一种新的(据我们所知)方法。

相似文献

1
2
Comparative study of the effects of high hydrostatic pressure per se and high argon pressure on urate oxidase ligand stabilization.
Acta Crystallogr D Struct Biol. 2022 Feb 1;78(Pt 2):162-173. doi: 10.1107/S2059798321012134. Epub 2022 Jan 21.
3
Functional relevance of the internal hydrophobic cavity of urate oxidase.
FEBS Lett. 2014 May 2;588(9):1715-9. doi: 10.1016/j.febslet.2014.03.017. Epub 2014 Mar 18.
4
High pressure macromolecular crystallography: the 140-MPa crystal structure at 2.3 A resolution of urate oxidase, a 135-kDa tetrameric assembly.
Biochim Biophys Acta. 2006 Mar;1764(3):391-7. doi: 10.1016/j.bbapap.2006.01.006. Epub 2006 Jan 26.
7
Spectroscopic characterization of intermediates in the urate oxidase reaction.
Biochemistry. 1998 Aug 18;37(33):11651-9. doi: 10.1021/bi980446g.
8
9
Pressure-response analysis of anesthetic gases xenon and nitrous oxide on urate oxidase: a crystallographic study.
FASEB J. 2011 Jul;25(7):2266-75. doi: 10.1096/fj.11-183046. Epub 2011 Mar 18.

引用本文的文献

2
The effects of free Cys residues on the structure, activity, and tetrameric stability of mammalian uricase.
Appl Microbiol Biotechnol. 2023 Jul;107(14):4533-4542. doi: 10.1007/s00253-023-12597-y. Epub 2023 May 31.
3
The actions of volatile anesthetics: a new perspective.
Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1169-1177. doi: 10.1107/S2059798318004771. Epub 2018 Nov 30.
4
Shifting Retroviral Vector Integrations Away from Transcriptional Start Sites via DNA-Binding Protein Domain Insertion into Integrase.
Mol Ther Methods Clin Dev. 2018 Nov 13;12:58-70. doi: 10.1016/j.omtm.2018.11.001. eCollection 2019 Mar 15.
5
Xenon for tunnelling analysis of the efflux pump component OprN.
PLoS One. 2017 Sep 8;12(9):e0184045. doi: 10.1371/journal.pone.0184045. eCollection 2017.
7
Selective pressure modulation of synaptic voltage-dependent calcium channels-involvement in HPNS mechanism.
J Cell Mol Med. 2016 Oct;20(10):1872-88. doi: 10.1111/jcmm.12877. Epub 2016 Jun 8.
8
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes.
Extremophiles. 2015 Jul;19(4):721-40. doi: 10.1007/s00792-015-0760-3. Epub 2015 Jun 23.
10
Mapping protein conformational heterogeneity under pressure with site-directed spin labeling and double electron-electron resonance.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):E1201-10. doi: 10.1073/pnas.1403179111. Epub 2014 Mar 18.

本文引用的文献

2
Alteration of citrine structure by hydrostatic pressure explains the accompanying spectral shift.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13362-6. doi: 10.1073/pnas.0802252105. Epub 2008 Sep 3.
3
Free-energy linkage between folding and calcium binding in EF-hand proteins.
Biophys J. 2008 Nov 15;95(10):4820-8. doi: 10.1529/biophysj.108.135715. Epub 2008 Aug 8.
4
Structures of Arthrobacter globiformis urate oxidase-ligand complexes.
Acta Crystallogr D Biol Crystallogr. 2008 Aug;D64(Pt 8):815-22. doi: 10.1107/S0907444908013590. Epub 2008 Jul 17.
7
Adaptation of the base-paired double-helix molecular architecture to extreme pressure.
Nucleic Acids Res. 2007;35(14):4800-8. doi: 10.1093/nar/gkm511. Epub 2007 Jul 7.
8
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.
J Mol Biol. 2007 Mar 30;367(3):752-63. doi: 10.1016/j.jmb.2006.12.021. Epub 2006 Dec 15.
10
Probing conformational fluctuation of proteins by pressure perturbation.
Chem Rev. 2006 May;106(5):1814-35. doi: 10.1021/cr040440z.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验