Suppr超能文献

高压晶体学揭示含大腔蛋白的结构刚性

Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.

作者信息

Collins Marcus D, Quillin Michael L, Hummer Gerhard, Matthews Brian W, Gruner Sol M

机构信息

Department of Physics, Cornell University, Ithaca, NY 14853, USA.

出版信息

J Mol Biol. 2007 Mar 30;367(3):752-63. doi: 10.1016/j.jmb.2006.12.021. Epub 2006 Dec 15.

Abstract

Steric constraints, charged interactions and many other forces important to protein structure and function can be explored by mutagenic experiments. Research of this kind has led to a wealth of knowledge about what stabilizes proteins in their folded states. To gain a more complete picture requires that we perturb these structures in a continuous manner, something mutagenesis cannot achieve. With high pressure crystallographic methods it is now possible to explore the detailed properties of proteins while continuously varying thermodynamic parameters. Here, we detail the structural response of the cavity-containing mutant L99A of T4 lysozyme, as well as its pseudo wild-type (WT*) counterpart, to hydrostatic pressure. Surprisingly, the cavity has almost no effect on the pressure response: virtually the same changes are observed in WT* as in L99A under pressure. The cavity is most rigid, while other regions deform substantially. This implies that while some residues may increase the thermodynamic stability of a protein, they may also be structurally irrelevant. As recently shown, the cavity fills with water at pressures above 100 MPa while retaining its overall size. The resultant picture of the protein is one in which conformationally fluctuating side groups provide a liquid-like environment, but which also contribute to the rigidity of the peptide backbone.

摘要

通过诱变实验可以探究空间位阻、电荷相互作用以及许多其他对蛋白质结构和功能至关重要的作用力。这类研究已经产生了大量关于使蛋白质处于折叠状态的稳定因素的知识。要获得更完整的认识,需要我们以连续的方式扰动这些结构,而诱变无法做到这一点。借助高压晶体学方法,现在有可能在连续改变热力学参数的同时探究蛋白质的详细特性。在此,我们详细阐述了含腔突变体T4溶菌酶L99A及其假野生型(WT*)对应物对静水压力的结构响应。令人惊讶的是,该腔对压力响应几乎没有影响:在压力下,WT*中观察到的变化与L99A中几乎相同。该腔最为刚性,而其他区域则有显著变形。这意味着虽然一些残基可能会增加蛋白质的热力学稳定性,但它们在结构上可能也无关紧要。正如最近所表明的,在高于100 MPa的压力下,该腔会充满水,同时保持其整体大小。由此得到的蛋白质图景是,构象波动的侧链基团提供了类似液体的环境,但也有助于肽主链的刚性。

相似文献

1
Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography.
J Mol Biol. 2007 Mar 30;367(3):752-63. doi: 10.1016/j.jmb.2006.12.021. Epub 2006 Dec 15.
4
Role of cavities and hydration in the pressure unfolding of T4 lysozyme.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13846-51. doi: 10.1073/pnas.1410655111. Epub 2014 Sep 8.
7
Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure.
Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2437-46. doi: 10.1073/pnas.1506505112. Epub 2015 Apr 27.
10
The introduction of strain and its effects on the structure and stability of T4 lysozyme.
J Mol Biol. 2000 Jan 7;295(1):127-45. doi: 10.1006/jmbi.1999.3300.

引用本文的文献

1
2
Pushed to extremes: distinct effects of high temperature versus pressure on the structure of STEP.
Commun Biol. 2024 Jan 12;7(1):59. doi: 10.1038/s42003-023-05609-0.
4
Pressure, motion, and conformational entropy in molecular recognition by proteins.
Biophys Rep (N Y). 2022 Dec 28;3(1):100098. doi: 10.1016/j.bpr.2022.100098. eCollection 2023 Mar 8.
5
Pressure Adaptations in Deep-Sea Dihydrofolate Reductases: Compressibility versus Stability.
Biology (Basel). 2021 Nov 20;10(11):1211. doi: 10.3390/biology10111211.
6
Proximal charge effects on guest binding to a non-polar pocket.
Chem Sci. 2020 Mar 17;11(14):3656-3663. doi: 10.1039/c9sc06268h. eCollection 2020 Apr 14.
7
Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution.
Nat Chem. 2020 Jul;12(7):589-594. doi: 10.1038/s41557-020-0458-8. Epub 2020 May 18.
8
Universality and Structural Implications of the Boson Peak in Proteins.
Biophys J. 2019 Jul 23;117(2):229-238. doi: 10.1016/j.bpj.2019.06.007. Epub 2019 Jun 14.
10
Predicting Binding Free Energies: Frontiers and Benchmarks.
Annu Rev Biophys. 2017 May 22;46:531-558. doi: 10.1146/annurev-biophys-070816-033654. Epub 2017 Apr 7.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Probing conformational fluctuation of proteins by pressure perturbation.
Chem Rev. 2006 May;106(5):1814-35. doi: 10.1021/cr040440z.
4
Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16668-71. doi: 10.1073/pnas.0508224102. Epub 2005 Nov 3.
5
High-pressure cooling of protein crystals without cryoprotectants.
Acta Crystallogr D Biol Crystallogr. 2005 Jul;61(Pt 7):881-90. doi: 10.1107/S090744490500836X. Epub 2005 Jun 24.
6
NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar.
J Mol Biol. 2005 Mar 25;347(2):277-85. doi: 10.1016/j.jmb.2005.01.052.
7
The first crystal structure of a macromolecular assembly under high pressure: CpMV at 330 MPa.
Biophys J. 2005 May;88(5):3562-71. doi: 10.1529/biophysj.104.058636. Epub 2005 Feb 24.
8
The CCP4 suite: programs for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):760-3. doi: 10.1107/S0907444994003112.
10
The solution structure of bovine pancreatic trypsin inhibitor at high pressure.
Protein Sci. 2003 Sep;12(9):1971-9. doi: 10.1110/ps.0242103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验