McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada.
Neuroimage. 2010 Oct 1;52(4):1261-7. doi: 10.1016/j.neuroimage.2010.05.029. Epub 2010 May 17.
Several methods exist and are frequently used to quantify grey matter (GM) atrophy in multiple sclerosis (MS). Fundamental to all available techniques is the accurate segmentation of GM in the brain, a difficult task confounded even further by the pathology present in the brains of MS patients. In this paper, we examine the segmentations of six different automated techniques and compare them to a manually defined reference standard. Results demonstrate that, although the algorithms perform similarly to manual segmentations of cortical GM, severe shortcomings are present in the segmentation of deep GM structures. This deficiency is particularly relevant given the current interest in the role of GM in MS and the numerous reports of atrophy in deep GM structures.
存在几种方法,并经常用于量化多发性硬化症(MS)中的灰质(GM)萎缩。所有可用技术的基础都是大脑中 GM 的准确分割,即使在 MS 患者的大脑中存在病理学,这也是一项艰巨的任务。在本文中,我们检查了六种不同自动技术的分割,并将其与手动定义的参考标准进行了比较。结果表明,尽管这些算法与皮质 GM 的手动分割表现相似,但在深 GM 结构的分割中存在严重的缺陷。鉴于目前对 GM 在 MS 中的作用的兴趣以及深 GM 结构萎缩的众多报道,这种缺陷尤其重要。