Suppr超能文献

器械血栓形成模拟器 (DTE)--心血管器械的设计优化方法:两种双叶 MHV 设计的研究。

Device Thrombogenicity Emulator (DTE)--design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs.

机构信息

Department of Biomedical Engineering, Stony Brook University, HSC T18-030, Stony Brook, NY 11794-8181, USA.

出版信息

J Biomech. 2010 Aug 26;43(12):2400-9. doi: 10.1016/j.jbiomech.2010.04.020. Epub 2010 May 21.

Abstract

Patients who receive prosthetic heart valve (PHV) implants require mandatory anticoagulation medication after implantation due to the thrombogenic potential of the valve. Optimization of PHV designs may facilitate reduction of flow-induced thrombogenicity and reduce or eliminate the need for post-implant anticoagulants. We present a methodology entitled Device Thrombogenicty Emulator (DTE) for optimizing the thrombo-resistance performance of PHV by combining numerical and experimental approaches. Two bileaflet mechanical heart valves (MHV) designs, St. Jude Medical (SJM) and ATS, were investigated by studying the effect of distinct flow phases on platelet activation. Transient turbulent and direct numerical simulations (DNS) were conducted, and stress loading histories experienced by the platelets were calculated along flow trajectories. The numerical simulations indicated distinct design dependent differences between the two valves. The stress loading waveforms extracted from the numerical simulations were programmed into a hemodynamic shearing device (HSD), emulating the flow conditions past the valves in distinct 'hot-spot' flow regions that are implicated in MHV thrombogenicity. The resultant platelet activity was measured with a modified prothrombinase assay, and was found to be significantly higher in the SJM valve, mostly during the regurgitation phase. The experimental results were in excellent agreement with the calculated platelet activation potential. This establishes the utility of the DTE methodology for serving as a test bed for evaluating design modifications for achieving better thrombogenic performance for such devices.

摘要

接受人工心脏瓣膜 (PHV) 植入的患者由于瓣膜的血栓形成潜力,在植入后需要强制性的抗凝药物治疗。优化 PHV 设计可以促进减少血流诱导的血栓形成,并减少或消除植入后抗凝剂的需求。我们提出了一种名为设备血栓形成模拟器 (DTE) 的方法,通过结合数值和实验方法来优化 PHV 的抗血栓性能。通过研究不同流动阶段对血小板激活的影响,研究了两种双叶机械心脏瓣膜 (MHV) 设计,即圣犹达医疗 (SJM) 和 ATS。进行了瞬态湍流和直接数值模拟 (DNS),并沿着流动轨迹计算了血小板所经历的应力加载历史。数值模拟表明,两种瓣膜之间存在明显的设计依赖性差异。从数值模拟中提取的应力加载波形被编程到血流剪切装置 (HSD) 中,以模拟在与 MHV 血栓形成有关的特定“热点”流动区域中流过瓣膜的流动条件。用改良的凝血酶原酶测定法测量了由此产生的血小板活性,发现 SJM 瓣膜的活性明显更高,主要是在反流阶段。实验结果与计算出的血小板激活潜力非常吻合。这证明了 DTE 方法可用于评估设计修改,以实现此类设备更好的血栓形成性能。

相似文献

1
Device Thrombogenicity Emulator (DTE)--design optimization methodology for cardiovascular devices: a study in two bileaflet MHV designs.
J Biomech. 2010 Aug 26;43(12):2400-9. doi: 10.1016/j.jbiomech.2010.04.020. Epub 2010 May 21.
4
5
Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
Artif Organs. 2007 Sep;31(9):677-88. doi: 10.1111/j.1525-1594.2007.00446.x.
6
Device thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices.
J Biomech. 2013 Jan 18;46(2):338-44. doi: 10.1016/j.jbiomech.2012.11.033. Epub 2012 Dec 6.
7
Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves.
Ann Biomed Eng. 2004 Aug;32(8):1058-66. doi: 10.1114/b:abme.0000036642.21895.3f.

引用本文的文献

1
Thrombogenic Risk Assessment of Transcatheter Prosthetic Heart Valves Using a Fluid-Structure Interaction Approach.
Comput Methods Programs Biomed. 2024 Dec;257:108469. doi: 10.1016/j.cmpb.2024.108469. Epub 2024 Oct 28.
2
The dynamics of red blood cells traversing slits of mechanical heart valves under high shear.
Biophys J. 2024 Nov 5;123(21):3780-3797. doi: 10.1016/j.bpj.2024.09.027. Epub 2024 Sep 26.
4
Analysis of fibrocalcific aortic valve stenosis: computational pre-and-post TAVR haemodynamics behaviours.
R Soc Open Sci. 2024 Feb 21;11(2):230905. doi: 10.1098/rsos.230905. eCollection 2024 Feb.
5
Effect of Sinotubular Junction Size on TAVR Leaflet Thrombosis: A Fluid-Structure Interaction Analysis.
Ann Biomed Eng. 2024 Mar;52(3):719-733. doi: 10.1007/s10439-023-03419-3. Epub 2023 Dec 14.
7
A New Mathematical Numerical Model to Evaluate the Risk of Thrombosis in Three Clinical Ventricular Assist Devices.
Bioengineering (Basel). 2022 May 27;9(6):235. doi: 10.3390/bioengineering9060235.
9
Patient-Specific Computational Fluid Dynamics Reveal Localized Flow Patterns Predictive of Post-Left Ventricular Assist Device Aortic Incompetence.
Circ Heart Fail. 2021 Jul;14(7):e008034. doi: 10.1161/CIRCHEARTFAILURE.120.008034. Epub 2021 Jun 18.
10
Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood.
Cell Mol Bioeng. 2020 Jun 22;13(6):575-590. doi: 10.1007/s12195-020-00628-x. eCollection 2020 Dec.

本文引用的文献

1
High-shear stress sensitizes platelets to subsequent low-shear conditions.
Ann Biomed Eng. 2010 Apr;38(4):1442-50. doi: 10.1007/s10439-010-9936-2. Epub 2010 Feb 5.
2
Fifteen years of experience with ATS mechanical heart valve prostheses.
J Thorac Cardiovasc Surg. 2010 Jun;139(6):1494-500. doi: 10.1016/j.jtcvs.2009.07.039. Epub 2009 Sep 10.
5
Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach.
J Biomech. 2008 Aug 7;41(11):2539-50. doi: 10.1016/j.jbiomech.2008.05.004. Epub 2008 Jun 24.
6
Biological effects of dynamic shear stress in cardiovascular pathologies and devices.
Expert Rev Med Devices. 2008 Mar;5(2):167-81. doi: 10.1586/17434440.5.2.167.
8
Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses.
Ann Biomed Eng. 2008 Feb;36(2):276-97. doi: 10.1007/s10439-007-9411-x. Epub 2007 Nov 30.
9
Procoagulant properties of flow fields in stenotic and expansive orifices.
Ann Biomed Eng. 2008 Jan;36(1):1-13. doi: 10.1007/s10439-007-9398-3. Epub 2007 Nov 6.
10
Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies.
Artif Organs. 2007 Sep;31(9):677-88. doi: 10.1111/j.1525-1594.2007.00446.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验