Suppr超能文献

去除发声以提高双轴吞咽加速度计信号的自动分割。

Vocalization removal for improved automatic segmentation of dual-axis swallowing accelerometry signals.

机构信息

Bloorview Research Institute, Bloorview Kids Rehab and the Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.

出版信息

Med Eng Phys. 2010 Jul;32(6):668-72. doi: 10.1016/j.medengphy.2010.04.008. Epub 2010 May 18.

Abstract

Automatic segmentation of dual-axis swallowing accelerometry signals can be severely affected by strong vocalizations. In this paper, a method based on periodicity detection is proposed to detect and remove such vocalizations. Periodic signal components are detected using conventional speech processing techniques and information from both axes are combined to improve vocalization detection accuracy. Experiments with 408 healthy subjects performing dry, wet, and wet chin tuck swallows show that the proposed method attains an average 95.3% sensitivity and 96.3% specificity. When applied in conjunction with an automatic segmentation algorithm, it is observed that segmentation accuracy improves by approximately 55%. These results encourage further development of medical devices for the detection of swallowing difficulties.

摘要

双轴吞咽加速计信号的自动分割可能会受到强烈发声的严重影响。在本文中,提出了一种基于周期性检测的方法来检测和去除这种发声。使用传统的语音处理技术和来自两个轴的信息来检测周期性信号分量,以提高发声检测的准确性。使用 408 名健康受试者进行干、湿和湿下巴吞咽的实验表明,所提出的方法的平均灵敏度为 95.3%,特异性为 96.3%。当与自动分割算法结合使用时,观察到分割准确性提高了约 55%。这些结果鼓励进一步开发用于检测吞咽困难的医疗设备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验