Suppr超能文献

利用 DIC 显微镜视频中的 SIFT 特征进行活细胞跟踪。

Live-cell tracking using SIFT features in DIC microscopic videos.

机构信息

Department of Computer Science, Loughborough University, Loughborough LB113TU, UK.

出版信息

IEEE Trans Biomed Eng. 2010 Sep;57(9):2219-28. doi: 10.1109/TBME.2010.2045376. Epub 2010 May 17.

Abstract

In this paper, a novel motion-tracking scheme using scale-invariant features is proposed for automatic cell motility analysis in gray-scale microscopic videos, particularly for the live-cell tracking in low-contrast differential interference contrast (DIC) microscopy. In the proposed approach, scale-invariant feature transform (SIFT) points around live cells in the microscopic image are detected, and a structure locality preservation (SLP) scheme using Laplacian Eigenmap is proposed to track the SIFT feature points along successive frames of low-contrast DIC videos. Experiments on low-contrast DIC microscopic videos of various live-cell lines shows that in comparison with principal component analysis (PCA) based SIFT tracking, the proposed Laplacian-SIFT can significantly reduce the error rate of SIFT feature tracking. With this enhancement, further experimental results demonstrate that the proposed scheme is a robust and accurate approach to tackling the challenge of live-cell tracking in DIC microscopy.

摘要

本文提出了一种新的运动跟踪方案,使用尺度不变特征,用于灰度显微视频中的自动细胞运动分析,特别是用于低对比度微分干涉差(DIC)显微镜中的活细胞跟踪。在所提出的方法中,检测显微镜图像中活细胞周围的尺度不变特征变换(SIFT)点,并提出了一种使用拉普拉斯特征映射的结构局部保持(SLP)方案,以跟踪低对比度 DIC 视频的连续帧中的 SIFT 特征点。对各种活细胞系的低对比度 DIC 显微视频的实验表明,与基于主成分分析(PCA)的 SIFT 跟踪相比,所提出的拉普拉斯-SIFT 可以显著降低 SIFT 特征跟踪的错误率。通过这种增强,进一步的实验结果表明,所提出的方案是一种解决 DIC 显微镜中活细胞跟踪挑战的稳健且准确的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验