Centre de Recherche en Sciences et Technologies de l'Information et de la Communication, Université de Reims Champagne-Ardenne, Troyes 10000, France.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1620-7. doi: 10.1109/TBME.2010.2045123. Epub 2010 May 17.
In this paper, a sparse representation method is proposed for magnetic resonance spectroscopy (MRS) quantification. An observed MR spectrum is composed of a set of metabolic spectra of interest, a baseline and a noise. To separate the spectra of interest, the a priori knowledge about these spectra, such as signal models, the peak frequencies, and linewidth ranges of different resonances, is first integrated to construct a dictionary. The separation of the spectra of interest is then performed by using a pursuit algorithm to find their sparse representations with respect to the dictionary. For the challenging baseline problem, a wavelet filter is proposed to filter the smooth and broad components of both the observed spectra and the basis functions in the dictionary. The computation of sparse representation can then be carried out by using the remaining data. Simulation results show the good performance of this wavelet filtering-based strategy in separating the overlapping components between the baselines and the spectra of interest, when no appropriate model function for the baseline is available. Quantifications of in vivo brain MR spectra from tumor patients in different stages of progression demonstrate the effectiveness of the proposed method.
本文提出了一种用于磁共振波谱(MRS)定量分析的稀疏表示方法。观测到的磁共振谱由一组感兴趣的代谢谱、基线和噪声组成。为了分离感兴趣的谱,首先整合这些谱的先验知识,例如信号模型、不同共振的峰值频率和线宽范围,以构建字典。然后,通过使用追踪算法来找到它们相对于字典的稀疏表示,从而实现感兴趣谱的分离。对于具有挑战性的基线问题,提出了一种小波滤波器来滤除观测谱和字典中基函数的平滑和宽频分量。然后,可以使用剩余数据进行稀疏表示的计算。仿真结果表明,当不存在适用于基线的适当模型函数时,这种基于小波滤波的策略在分离基线和感兴趣谱之间的重叠分量方面具有良好的性能。对不同进展阶段肿瘤患者的体内脑磁共振谱进行定量分析,验证了所提出方法的有效性。