Suppr超能文献

利用频率先验知识进行频率选择性磁共振波谱数据定量分析。

Frequency-selective MRS data quantification with frequency prior knowledge.

作者信息

Dologlou I, Van Huffel S, Van Ormondt D

机构信息

Department of Electrical Engineering (ESAT), Katholieke Universiteit Leuven, Kard. Mercierlaan 94, Leuven, 3001, Belgium.

出版信息

J Magn Reson. 1998 Feb;130(2):238-43. doi: 10.1006/jmre.1997.1315.

Abstract

Various signal processing techniques have been proposed to improve spectral estimation of closely spaced sinusoids in the presence of noise. This paper exploits frequency prior knowledge information to extract single peaks in magnetic resonance spectra, corresponding to metabolites of interest, by means of a highly selective finite impulse response filter. Thereafter the estimation of the parameters of the peaks is carried out using a singular-value-decomposition-based method known as HTLS. The new technique improves the performance of fully automated magnetic resonance spectroscopy data quantification when frequency prior knowledge is available.

摘要

为了在存在噪声的情况下改善对紧密间隔正弦波的频谱估计,人们提出了各种信号处理技术。本文利用频率先验知识信息,通过一个高选择性有限脉冲响应滤波器,在磁共振谱中提取对应于感兴趣代谢物的单峰。此后,使用一种称为HTLS的基于奇异值分解的方法来进行峰值参数的估计。当有频率先验知识可用时,这项新技术提高了全自动磁共振波谱数据定量分析的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验