Suppr超能文献

吞噬作用和吞噬体酸化是金黄色葡萄球菌病原体加工和 MyD88 依赖性反应所必需的。

Phagocytosis and phagosome acidification are required for pathogen processing and MyD88-dependent responses to Staphylococcus aureus.

机构信息

Developmental Immunology and Lipid Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA.

出版信息

J Immunol. 2010 Jun 15;184(12):7071-81. doi: 10.4049/jimmunol.1000110. Epub 2010 May 17.

Abstract

Innate immunity is vital for protection from microbes and is mediated by humoral effectors, such as cytokines, and cellular immune defenses, including phagocytic cells (e.g., macrophages). After internalization by phagocytes, microbes are delivered into a phagosome, a complex intracellular organelle with a well-established and important role in microbial killing. However, the role of this organelle in cytokine responses and microbial sensing is less well defined. In this study, we assess the role of the phagosome in innate immune sensing and demonstrate the critical interdependence of phagocytosis and pattern recognition receptor signaling during response to the Gram-positive bacteria Staphylococcus aureus. We show that phagocytosis is essential to initiate an optimal MyD88-dependent response to Staphylococcus aureus. Prior to TLR-dependent cytokine production, bacteria must be engulfed and delivered into acidic phagosomes where acid-activated host enzymes digest the internalized bacteria to liberate otherwise cryptic bacterial-derived ligands that initiate responses from the vacuole. Importantly, in macrophages in which phagosome acidification is perturbed, the impaired response to S. aureus can be rescued by the addition of lysostaphin, a bacterial endopeptidase active at neutral pH that can substitute for the acid-activated host enzymes. Together, these observations delineate the interdependence of phagocytosis with pattern recognition receptor signaling and suggest that therapeutics to augment functions and signaling from the vacuole may be useful strategies to increase host responses to S. aureus.

摘要

先天免疫对于抵御微生物至关重要,它由体液效应因子(如细胞因子)和细胞免疫防御介导,包括吞噬细胞(如巨噬细胞)。吞噬细胞内化微生物后,微生物被递送到吞噬体中,吞噬体是一种复杂的细胞内细胞器,在微生物杀伤中具有明确而重要的作用。然而,该细胞器在细胞因子反应和微生物感应中的作用尚未得到充分定义。在这项研究中,我们评估了吞噬体在先天免疫感应中的作用,并证明了吞噬作用和模式识别受体信号在金黄色葡萄球菌反应中的关键相互依存性。我们表明,吞噬作用对于金黄色葡萄球菌的 MyD88 依赖性反应的起始是必需的。在 TLR 依赖性细胞因子产生之前,细菌必须被吞噬并递送到酸性吞噬体中,在那里,酸性激活的宿主酶消化内化的细菌,释放出原本隐藏的细菌衍生配体,从而从液泡中引发反应。重要的是,在吞噬体酸化受到干扰的巨噬细胞中,通过添加溶菌酶可以挽救金黄色葡萄球菌反应的受损,溶菌酶是一种在中性 pH 下具有活性的细菌内肽酶,可以替代酸性激活的宿主酶。这些观察结果共同描绘了吞噬作用与模式识别受体信号之间的相互依存关系,并表明增强液泡功能和信号的疗法可能是提高宿主对金黄色葡萄球菌反应的有用策略。

相似文献

1
2
Measurement of phagocytosis, phagosome acidification, and intracellular killing of Staphylococcus aureus.
Curr Protoc Immunol. 2012 Nov;Chapter 14:14.30.1-14.30.12. doi: 10.1002/0471142735.im1430s99.
3
Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria.
J Immunol. 2011 Dec 1;187(11):6002-10. doi: 10.4049/jimmunol.1100232. Epub 2011 Oct 26.
7
Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo.
J Immunol. 2011 Jun 1;186(11):6585-96. doi: 10.4049/jimmunol.1002794. Epub 2011 Apr 27.
8
Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4.
Immunity. 2005 Oct;23(4):409-17. doi: 10.1016/j.immuni.2005.09.007.
9
Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages.
Front Immunol. 2021 Apr 29;12:662063. doi: 10.3389/fimmu.2021.662063. eCollection 2021.

引用本文的文献

1
Proton-activated chloride channel governs phagosome-mediated antibacterial immunity in peritoneal macrophages.
J Exp Med. 2025 Nov 3;222(11). doi: 10.1084/jem.20250312. Epub 2025 Aug 22.
3
Intercalated cell function, kidney innate immunity, and urinary tract infections.
Pflugers Arch. 2024 Apr;476(4):565-578. doi: 10.1007/s00424-024-02905-4. Epub 2024 Jan 16.
4
Impact of surface receptors TLR2, CR3, and FcγRIII on phagocytosis and intracellular survival in macrophages.
Infect Immun. 2024 Jan 16;92(1):e0038323. doi: 10.1128/iai.00383-23. Epub 2023 Nov 29.
5
Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles.
ACS Appl Mater Interfaces. 2023 May 24;15(20):24244-24256. doi: 10.1021/acsami.3c05335. Epub 2023 May 15.
6
Peptidoglycan-induced modulation of metabolic and inflammatory responses.
Immunometabolism (Cobham). 2023 Apr 28;5(2):e00024. doi: 10.1097/IN9.0000000000000024. eCollection 2023 Apr.
7
Myeloid-Derived Suppressor Cells in Cancer and COVID-19 as Associated with Oxidative Stress.
Vaccines (Basel). 2023 Jan 19;11(2):218. doi: 10.3390/vaccines11020218.
8
A Staphylococcal Glucosaminidase Drives Inflammatory Responses by Processing Peptidoglycan Chains to Physiological Lengths.
Infect Immun. 2023 Feb 16;91(2):e0050022. doi: 10.1128/iai.00500-22. Epub 2023 Jan 30.
9
The Role of Reactive Species on Innate Immunity.
Vaccines (Basel). 2022 Oct 17;10(10):1735. doi: 10.3390/vaccines10101735.
10
The E3 ubiquitin ligase RNF115 regulates phagosome maturation and host response to bacterial infection.
EMBO J. 2022 Dec 1;41(23):e108970. doi: 10.15252/embj.2021108970. Epub 2022 Oct 25.

本文引用的文献

1
Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.
PLoS Pathog. 2008 Nov;4(11):e1000218. doi: 10.1371/journal.ppat.1000218. Epub 2008 Nov 28.
2
Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome.
J Exp Med. 2008 Jan 21;205(1):169-81. doi: 10.1084/jem.20071164. Epub 2008 Jan 7.
3
Structural variation in the glycan strands of bacterial peptidoglycan.
FEMS Microbiol Rev. 2008 Mar;32(2):287-306. doi: 10.1111/j.1574-6976.2007.00088.x. Epub 2007 Dec 5.
4
Phagosomal acidification: measurement, manipulation and functional consequences.
Biochem Soc Trans. 2007 Nov;35(Pt 5):1083-7. doi: 10.1042/BST0351083.
5
Phagocytosis and antigen presentation in dendritic cells.
Immunol Rev. 2007 Oct;219:143-56. doi: 10.1111/j.1600-065X.2007.00552.x.
6
Blockade of tumor necrosis factor-induced Bid cleavage by caspase-resistant Rb.
J Biol Chem. 2007 Oct 5;282(40):29401-13. doi: 10.1074/jbc.M702261200. Epub 2007 Aug 8.
7
A systems biology analysis of the Drosophila phagosome.
Nature. 2007 Jan 4;445(7123):95-101. doi: 10.1038/nature05380. Epub 2006 Dec 6.
8
CFTR regulates phagosome acidification in macrophages and alters bactericidal activity.
Nat Cell Biol. 2006 Sep;8(9):933-44. doi: 10.1038/ncb1456. Epub 2006 Aug 20.
10
Phagosome maturation proceeds independently of stimulation of toll-like receptors 2 and 4.
Immunity. 2005 Oct;23(4):409-17. doi: 10.1016/j.immuni.2005.09.007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验