Suppr超能文献

使用 PNIPAM 微粒使巨噬细胞中的吞噬体渗透破裂。

Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles.

机构信息

Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310-2870, United States.

College of Medicine, Florida State University, Tallahassee, Florida 32306-4370, United States.

出版信息

ACS Appl Mater Interfaces. 2023 May 24;15(20):24244-24256. doi: 10.1021/acsami.3c05335. Epub 2023 May 15.

Abstract

The rupture of macrophage phagosomes has been implicated in various human diseases and plays a critical role in immunity. However, the mechanisms underlying this process are complex and not yet fully understood. This study describes the development of a robust engineering method for rupturing phagosomes based on a well-defined mechanism. The method utilizes microfabricated microparticles composed of uncrosslinked linear poly(-isopropylacrylamide) (PNIPAM) as phagocytic objects. These microparticles are internalized into phagosomes at 37 °C. By exposing the cells to a cold shock at 0 °C, the vast majority of the microparticle-containing phagosomes rupture. The percentage of phagosomal rupture decreases with the increase of the cold-shock temperature. The osmotic pressure in the phagosomes and the tension in the phagosomal membrane are calculated using the Flory-Huggins theory and the Young-Laplace equation. The modeling results indicate that the osmotic pressure generated by dissolved microparticles is probably responsible for phagosomal rupture, are consistent with the experimentally observed dependence of phagosomal rupture on the cold-shock temperature, and suggest the existence of a cellular mechanism for resisting phagosomal rupture. Moreover, the effects of various factors including hypotonic shock, chloroquine, tetrandrine, colchicine, and l-leucyl-l-leucine -methyl ester (LLOMe) on phagosomal rupture have been studied with this method. The results further support that the osmotic pressure generated by the dissolved microparticles causes phagosomal rupture and demonstrated usefulness of this method for studying phagosomal rupture. This method can be further developed, ultimately leading to a deeper understanding of phagosomal rupture.

摘要

巨噬细胞吞噬体的破裂与多种人类疾病有关,并在免疫中起着关键作用。然而,这一过程的机制很复杂,尚未完全了解。本研究描述了一种基于明确机制的强大的吞噬体破裂工程方法的开发。该方法利用由未交联的线性聚异丙基丙烯酰胺(PNIPAM)组成的微制造微颗粒作为吞噬物体。这些微颗粒在 37°C 下被内化到吞噬体中。通过将细胞暴露在 0°C 的冷冲击下,绝大多数含有微颗粒的吞噬体破裂。随着冷休克温度的升高,吞噬体破裂的百分比降低。使用 Flory-Huggins 理论和 Young-Laplace 方程计算吞噬体内的渗透压和吞噬体膜的张力。建模结果表明,溶解的微颗粒产生的渗透压可能是吞噬体破裂的原因,与实验观察到的吞噬体破裂对冷休克温度的依赖性一致,并表明存在一种细胞机制来抵抗吞噬体破裂。此外,还使用该方法研究了各种因素(包括低渗冲击、氯喹、汉防己甲素、秋水仙碱和 l-亮氨酸-l-亮氨酸甲酯(LLOMe))对吞噬体破裂的影响。结果进一步支持了溶解的微颗粒产生的渗透压导致吞噬体破裂,并证明了该方法在研究吞噬体破裂中的有用性。该方法可以进一步发展,最终深入了解吞噬体破裂。

相似文献

1
Osmotically Rupturing Phagosomes in Macrophages Using PNIPAM Microparticles.使用 PNIPAM 微粒使巨噬细胞中的吞噬体渗透破裂。
ACS Appl Mater Interfaces. 2023 May 24;15(20):24244-24256. doi: 10.1021/acsami.3c05335. Epub 2023 May 15.

本文引用的文献

3
6
Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection.溶酶体融合在真菌感染过程中维持吞噬体的完整性。
Cell Host Microbe. 2020 Dec 9;28(6):798-812.e6. doi: 10.1016/j.chom.2020.09.004. Epub 2020 Oct 5.
8
Physical Constraints and Forces Involved in Phagocytosis.吞噬作用涉及的物理限制和力。
Front Immunol. 2020 Jun 12;11:1097. doi: 10.3389/fimmu.2020.01097. eCollection 2020.
10
The great escape: how cationic polyplexes overcome the endosomal barrier.大逃亡:阳离子多聚体如何克服内体屏障。
J Mater Chem B. 2018 Nov 21;6(43):6904-6918. doi: 10.1039/c8tb00967h. Epub 2018 Sep 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验