Suppr超能文献

控制由多核大环支撑的分子铜簇的大小。

Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle.

作者信息

Wang Qiuran, Murphy Ryan P, Gau Michael R, Carroll Patrick J, Tomson Neil C

机构信息

Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.

出版信息

Inorg Chem. 2024 Sep 30;63(39):18332-18344. doi: 10.1021/acs.inorgchem.4c02416. Epub 2024 Sep 18.

Abstract

The use of a nonrigid, pyridyldialdimine-derived macrocyclic ligand (PDAI) enabled the synthesis of well-defined mono-, di-, tri-, and tetra-nuclear Cu(I) complexes in good yields through rational synthetic means. Starting from mono- and diargentous PDAI complexes, transmetalation to Cu(I) proceeded smoothly with formation of AgX (X = Cl, I) salts to generate mono-, di-, and trinuclear copper complexes. Monodentate supporting ligands (MeCN, xylNC, PMe, PPh) were found to either transmetallate with or bind various di- and trinuclear clusters. The solution-phase dynamic behaviors of these species were studied through NMR spectroscopic investigations, and an in-depth study of the trinuclear systems revealed a rate dependence on the identity of the supporting ligand, indicating that ligand dissociation reactions were involved in the dynamic exchange processes. Synthetic investigations further found methods for the purposeful interconversion between the di- and trinuclear systems as well as the synthesis of a pseudotetrahedral tetracopper complex with two μ-Ph supporting ligands.

摘要

使用一种非刚性的、吡啶二醛衍生的大环配体(PDAI),通过合理的合成方法能够以良好的产率合成结构明确的单核、双核、三核和四核Cu(I)配合物。从单银和双银PDAI配合物出发,与Cu(I)的金属转移反应顺利进行,同时形成AgX(X = Cl、I)盐,从而生成单核、双核和三核铜配合物。发现单齿配位配体(MeCN、二甲苯腈、PMe、PPh)要么发生金属转移反应,要么与各种双核和三核簇结合。通过核磁共振光谱研究对这些物种的溶液相动力学行为进行了研究,对三核体系的深入研究表明,反应速率取决于配位配体的种类,这表明配体解离反应参与了动态交换过程。合成研究进一步找到了在双核和三核体系之间进行有目的相互转化的方法,以及合成具有两个μ-Ph配位配体的假四面体四铜配合物的方法。

相似文献

1
Controlling the Size of Molecular Copper Clusters Supported by a Multinucleating Macrocycle.
Inorg Chem. 2024 Sep 30;63(39):18332-18344. doi: 10.1021/acs.inorgchem.4c02416. Epub 2024 Sep 18.
2
Ligand-Copper(I) Primary O-Adducts: Design, Characterization, and Biological Significance of Cupric-Superoxides.
Acc Chem Res. 2023 Aug 15;56(16):2197-2212. doi: 10.1021/acs.accounts.3c00297. Epub 2023 Aug 1.
3
Antioxidants for male subfertility.
Cochrane Database Syst Rev. 2014(12):CD007411. doi: 10.1002/14651858.CD007411.pub3. Epub 2014 Dec 15.
5
Interventions for prevention of herpes simplex labialis (cold sores on the lips).
Cochrane Database Syst Rev. 2015 Aug 7;2015(8):CD010095. doi: 10.1002/14651858.CD010095.pub2.
6
Nicotine receptor partial agonists for smoking cessation.
Cochrane Database Syst Rev. 2023 May 5;5(5):CD006103. doi: 10.1002/14651858.CD006103.pub8.
7
Personalised care planning for adults with chronic or long-term health conditions.
Cochrane Database Syst Rev. 2015 Mar 3;2015(3):CD010523. doi: 10.1002/14651858.CD010523.pub2.
8
Impact of residual disease as a prognostic factor for survival in women with advanced epithelial ovarian cancer after primary surgery.
Cochrane Database Syst Rev. 2022 Sep 26;9(9):CD015048. doi: 10.1002/14651858.CD015048.pub2.
9
Pharmacological treatments in panic disorder in adults: a network meta-analysis.
Cochrane Database Syst Rev. 2023 Nov 28;11(11):CD012729. doi: 10.1002/14651858.CD012729.pub3.
10
Interventions for preventing and reducing the use of physical restraints for older people in all long-term care settings.
Cochrane Database Syst Rev. 2023 Jul 28;7(7):CD007546. doi: 10.1002/14651858.CD007546.pub3.

引用本文的文献

1
Assembling Di- and Polynuclear Cu(I) Complexes with Rigid Thioxanthone-Based Ligands: Structures, Reactivity, and Photoluminescence.
Inorg Chem. 2024 Dec 30;63(52):24466-24481. doi: 10.1021/acs.inorgchem.4c03819. Epub 2024 Dec 16.

本文引用的文献

1
Mechanistic Investigations into the Selective Reduction of Oxygen by a Multicopper Oxidase T3 Site-Inspired Dicopper Complex.
ACS Catal. 2023 Apr 12;13(8):5712-5722. doi: 10.1021/acscatal.3c01143. eCollection 2023 Apr 21.
2
C-C σ-Bond Oxidative Addition and Hydrofunctionalization by a Macrocycle-Supported Diiron Complex.
J Am Chem Soc. 2022 Aug 10;144(31):14037-14041. doi: 10.1021/jacs.2c06266. Epub 2022 Jul 26.
3
Robust dicopper(i) μ-boryl complexes supported by a dinucleating naphthyridine-based ligand.
Chem Sci. 2022 May 13;13(22):6619-6625. doi: 10.1039/d2sc00848c. eCollection 2022 Jun 7.
4
Binding, Release and Functionalization of Intact Pnictogen Tetrahedra Coordinated to Dicopper Complexes.
Chemistry. 2022 Aug 10;28(45):e202201144. doi: 10.1002/chem.202201144. Epub 2022 Jun 23.
6
Macrocycle-Induced Modulation of Internuclear Interactions in Homobimetallic Complexes.
Inorg Chem. 2022 Apr 25;61(16):6263-6280. doi: 10.1021/acs.inorgchem.2c00522. Epub 2022 Apr 14.
7
A Well-Defined Anionic Dicopper(I) Monohydride Complex that Reacts like a Cluster.
Angew Chem Int Ed Engl. 2022 Jul 18;61(29):e202202318. doi: 10.1002/anie.202202318. Epub 2022 May 9.
8
A Dicopper Nitrenoid by Oxidation of a CuCu Core: Synthesis, Electronic Structure, and Reactivity.
J Am Chem Soc. 2021 May 12;143(18):7135-7143. doi: 10.1021/jacs.1c02235. Epub 2021 Apr 20.
10
Tuning metal-metal interactions for cooperative small molecule activation.
Chem Commun (Camb). 2021 Mar 21;57(23):2839-2853. doi: 10.1039/d0cc07721f. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验