Suppr超能文献

电化学表面钯纳米粒子结构用于信号增强。

Electrochemical surface structuring with palladium nanoparticles for signal enhancement.

机构信息

Nanobiotechnology & Bioanalysis Group, Department of Chemical Engineering, Universitat Rovira I Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain.

出版信息

Langmuir. 2010 Jul 20;26(14):12293-9. doi: 10.1021/la101398g.

Abstract

Surface nanostructuring with metal nanoparticles has gained importance because of the unique physicochemical properties of the nanoparticles. We have fabricated nanostructured surfaces on the basis of the sequential electrochemical deposition of palladium nanoparticles (Pd NPs) onto glassy carbon electrodes (GCEs). To increase the number density of the Pd NPs at the GC electrode surface, successive rounds of deposition/protection cycles were realized. Freshly deposited Pd NPs were immediately capped with 6-ferrocenylhexanethiol (Fc-C(6)SH) to prevent secondary nucleation processes from occurring during subsequent deposition rounds. This approach allowed us to maintain a narrow size distribution and, as such, the inherent properties of the deposited Pd NPs. Scanning electron microscopy (SEM) was used to confirm the successful deposition as well as to measure the size and spatial distribution of the deposited Pd NPs. SEM image analysis results showed that the number density of Pd NPs increased in each sequential deposition stage. The anodic peak current signal recorded for the electroactive SAM of Fc-C(6)SH following six consecutive deposition/protection cycles was found to be 75 times higher than that formed on a bulk palladium electrode. Finally, for comparison, gold NPs were deposited on GCEs following the same approach and exhibited considerably reduced signal enhancement properties as compared to the Pd NPs. The work presented here should find wide applicability for enhancing sensor signals by specifically structuring transducer surfaces on the nanoscale.

摘要

由于纳米粒子的独特物理化学性质,表面纳米结构化技术得到了重视。我们已经基于钯纳米粒子(Pd NPs)在玻璃碳电极(GCE)上的顺序电化学沉积来制造纳米结构化表面。为了增加 GC 电极表面上 Pd NPs 的数密度,实现了多轮沉积/保护循环。新鲜沉积的 Pd NPs 立即用 6-巯基己基-1-(5-(2-吡啶基)-1H-苯并咪唑)(Fc-C(6)SH)封端,以防止在随后的沉积循环中发生次级成核过程。这种方法使我们能够保持较窄的尺寸分布,从而保持沉积 Pd NPs 的固有特性。扫描电子显微镜(SEM)用于确认成功沉积以及测量沉积 Pd NPs 的尺寸和空间分布。SEM 图像分析结果表明,在每个顺序沉积阶段,Pd NPs 的数密度都增加了。在六个连续的沉积/保护循环之后,对于 Fc-C(6)SH 的电活性 SAM 记录的阳极峰电流信号被发现比在块状钯电极上形成的信号高 75 倍。最后,为了进行比较,按照相同的方法在 GCE 上沉积了金纳米粒子(Au NPs),与 Pd NPs 相比,其信号增强性能大大降低。本文提出的工作应该在通过在纳米尺度上专门结构化换能器表面来增强传感器信号方面具有广泛的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验