Institut de Biologie des Plantes, UMR8618 CNRS, Université de Paris Sud, 91405 Orsay cedex, France.
Plant Physiol. 2010 Jul;153(3):1144-60. doi: 10.1104/pp.110.153767. Epub 2010 May 20.
Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.
谷胱甘肽是一种主要的细胞硫醇,由谷胱甘肽还原酶(GR)维持在还原状态,GR 在拟南芥中有两个基因编码(GR1 和 GR2)。本研究通过综合遗传、转录组和氧化还原谱分析方法,研究了 GR1 在过氧化氢(H2O2)反应中的作用。为了确定谷胱甘肽状态变化在 H2O2 信号转导中的潜在作用,与过氧化氢酶缺陷型背景(cat2)相比,GR1 突变体(表现为氧化型谷胱甘肽(GSSG)的组成性增加),GSSG 的积累在 cat2 中是由 H2O2 条件驱动的。gr1 和 cat2 的平行转录组学分析确定了重叠的基因表达谱,在这两种系中,基因表达谱都依赖于生长日照长度。重叠基因包括植物激素相关基因,特别是暗示谷胱甘肽氧化状态在茉莉酸信号转导中的调节作用。在 cat2 gr1 双突变体中直接分析 H2O2-谷胱甘肽相互作用,证实了依赖 GR1 的谷胱甘肽状态是对增加的 H2O2 可用性的多种反应所必需的,包括限制损伤形成、水杨酸积累、诱导病程相关基因和通过茉莉酸途径进行信号转导。在 cat2 gr1 中对这些反应的调节与 GSSG 的剧烈积累和特定谷氧还蛋白和谷胱甘肽 S-转移酶的表达修饰有关,但几乎没有或没有证据表明存在一般性氧化应激或硫氧还蛋白相关基因表达的变化。我们得出结论,GR1 在依赖于日照长度的氧化还原信号转导中发挥着至关重要的作用,这种功能不能被第二个拟南芥 GR 基因或硫氧还蛋白系统(如硫氧还蛋白系统)所取代。