Suppr超能文献

基于定位加权图谱分析入院 CT 灌注扫描预测伴有失语症的急性脑卒中患者的语言改善:多变量逻辑模型。

Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based analysis of admission CT perfusion scans.

机构信息

Department of Radiology, Massachusetts General Hospital, Boston, MA 02114-9657, USA.

出版信息

AJNR Am J Neuroradiol. 2010 Oct;31(9):1661-8. doi: 10.3174/ajnr.A2125. Epub 2010 May 20.

Abstract

BACKGROUND AND PURPOSE

Prediction of functional outcome immediately after stroke onset can guide optimal management. Most prognostic grading scales to date, however, have been based on established global metrics such as total NIHSS score, admission infarct volume, or intracranial occlusion on CTA. Our purpose was to construct a more focused, location-weighted multivariate model for the prediction of early aphasia improvement, based not only on traditional clinical and imaging parameters, but also on atlas-based structure/function correlation specific to the clinical deficit, using CT perfusion imaging.

MATERIALS AND METHODS

Fifty-eight consecutive patients with aphasia due to first-time ischemic stroke of the left hemisphere were included. Language function was assessed on the basis of the patients admission and discharge NIHSS scores and clinical records. All patients had brain CTP and CTA within 9 hours of symptom onset. For image analysis, all CTPs were automatically co-registered to MNI-152 brain space and parcellated into mirrored cortical and subcortical regions. Multiple logistic regression analysis was used to find independent imaging and clinical predictors of language recovery.

RESULTS

By the time of discharge, 21 (36%) patients demonstrated improvement of language. Independent factors predicting improvement in language included rCBF of the angular gyrus GM (BA 39) and the lower third of the insular ribbon, proximal cerebral artery occlusion on admission CTA, and aphasia score on the admission NIHSS examination. Using these 4 variables, we developed a multivariate logistic regression model that could estimate the probability of early improvement in aphasia and predict functional outcome with 91% accuracy.

CONCLUSIONS

An imaging-based location-weighted multivariate model was developed to predict early language improvement of patients with aphasia by using admission data collected within 9 hours of stroke onset. This pilot model should be validated in a larger, prospective study; however, the semiautomated atlas-based analysis of brain CTP, along with the statistical approach, could be generalized for prediction of other outcome measures in patients with stroke.

摘要

背景与目的

对卒中发病后即刻的功能预后进行预测,可以指导最佳治疗策略的选择。但迄今为止,大多数预后分级量表都是基于既定的全局指标,如 NIHSS 总分、入院时梗死体积或 CTA 上的颅内闭塞。我们的目的是构建一个更聚焦、基于部位权重的多变量模型,不仅基于传统的临床和影像学参数,还基于 CT 灌注成像针对临床缺损的基于图谱的结构/功能相关性,来预测早期失语症的改善。

材料与方法

本研究纳入了 58 例因左半球首次缺血性卒中伴发失语症的连续患者。根据患者入院和出院时 NIHSS 评分和临床记录评估语言功能。所有患者在症状发作后 9 小时内行脑 CT 灌注和 CTA 检查。对于图像分析,所有 CT 灌注均自动与 MNI-152 脑空间配准,并分割为镜像皮质和皮质下区域。采用多元逻辑回归分析寻找语言恢复的独立影像学和临床预测因子。

结果

出院时,21 例(36%)患者的语言功能改善。独立预测语言改善的因素包括角回 GM(BA39)和岛叶下 1/3 区的 rCBF、入院 CTA 上的近端大脑中动脉闭塞和入院 NIHSS 检查时的失语症评分。使用这 4 个变量,我们建立了一个多元逻辑回归模型,可根据发病后 9 小时内采集的入院数据,估计失语症患者早期改善的可能性,并以 91%的准确率预测功能结局。

结论

我们开发了一种基于影像的基于部位权重的多变量模型,以使用发病后 9 小时内采集的入院数据预测失语症患者的早期语言改善。该初步模型应在更大的前瞻性研究中进行验证;然而,脑 CT 灌注的半自动图谱分析以及统计方法可以推广用于预测卒中患者的其他结局指标。

相似文献

2
Location-weighted CTP analysis predicts early motor improvement in stroke: a preliminary study.
Neurology. 2012 Jun 5;78(23):1853-9. doi: 10.1212/WNL.0b013e318258f799. Epub 2012 May 9.
4
Role of recanalization in acute stroke outcome: rationale for a CT angiogram-based "benefit of recanalization" model.
AJNR Am J Neuroradiol. 2008 Sep;29(8):1471-5. doi: 10.3174/ajnr.A1153. Epub 2008 Jul 3.
5
Focal Hypoperfusion in Acute Ischemic Stroke Perfusion CT: Clinical and Radiologic Predictors and Accuracy for Infarct Prediction.
AJNR Am J Neuroradiol. 2019 Mar;40(3):483-489. doi: 10.3174/ajnr.A5984. Epub 2019 Feb 21.
6
The Prognostic Value of CT Angiography and CT Perfusion in Acute Ischemic Stroke.
Cerebrovasc Dis. 2015;40(5-6):258-69. doi: 10.1159/000441088. Epub 2015 Oct 21.
7
Value of Vascular and Non-Vascular Pattern on Computed Tomography Perfusion in Patients With Acute Isolated Aphasia.
Stroke. 2020 Aug;51(8):2480-2487. doi: 10.1161/STROKEAHA.120.028821. Epub 2020 Jul 20.

引用本文的文献

1
Aphasia rehabilitation: a narrative review of adjuvant techniques.
Front Hum Neurosci. 2025 Jul 30;19:1554147. doi: 10.3389/fnhum.2025.1554147. eCollection 2025.
2
Investigating Aphasia Recovery: Demographic and Clinical Factors.
Brain Sci. 2023 Dec 21;14(1):7. doi: 10.3390/brainsci14010007.
3
Location-specific ASPECTS does not improve Outcome Prediction in Large Vessel Occlusion compared to Cumulative ASPECTS.
Clin Neuroradiol. 2023 Sep;33(3):661-668. doi: 10.1007/s00062-022-01258-8. Epub 2023 Jan 26.
4
Predictors of Therapy Response in Chronic Aphasia: Building a Foundation for Personalized Aphasia Therapy.
J Stroke. 2022 May;24(2):189-206. doi: 10.5853/jos.2022.01102. Epub 2022 May 31.
5
The Progress of Functional Magnetic Resonance Imaging in Patients with Poststroke Aphasia.
J Healthc Eng. 2022 Apr 21;2022:3270534. doi: 10.1155/2022/3270534. eCollection 2022.
6
Deep Learning Approach Using Diffusion-Weighted Imaging to Estimate the Severity of Aphasia in Stroke Patients.
J Stroke. 2022 Jan;24(1):108-117. doi: 10.5853/jos.2021.02061. Epub 2022 Jan 31.
7
Recovery of Apraxia of Speech and Aphasia in Patients With Hand Motor Impairment After Stroke.
Front Neurol. 2021 Mar 31;12:634065. doi: 10.3389/fneur.2021.634065. eCollection 2021.
8
Location-Specific ASPECTS Paradigm in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.
AJNR Am J Neuroradiol. 2020 Nov;41(11):2020-2026. doi: 10.3174/ajnr.A6847. Epub 2020 Oct 15.
9
Human Brain Atlases in Stroke Management.
Neuroinformatics. 2020 Oct;18(4):549-567. doi: 10.1007/s12021-020-09462-y.
10
Poor Outcomes Related to Anterior Extension of Large Hemispheric Infarction: Topographic Analysis of GAMES-RP Trial MRI Scans.
J Stroke Cerebrovasc Dis. 2020 Feb;29(2):104488. doi: 10.1016/j.jstrokecerebrovasdis.2019.104488. Epub 2019 Nov 29.

本文引用的文献

1
Arterial input function placement for accurate CT perfusion map construction in acute stroke.
AJR Am J Roentgenol. 2010 May;194(5):1330-6. doi: 10.2214/AJR.09.2845.
2
Optimal Tmax threshold for predicting penumbral tissue in acute stroke.
Stroke. 2009 Feb;40(2):469-75. doi: 10.1161/STROKEAHA.108.526954. Epub 2008 Dec 24.
3
Neuroimaging of ischemic stroke with CT and MRI: advancing towards physiology-based diagnosis and therapy.
Expert Rev Cardiovasc Ther. 2009 Jan;7(1):29-48. doi: 10.1586/14779072.7.1.29.
4
Site of the ischemic penumbra as a predictor of potential for recovery of functions.
Neurology. 2008 Jul 15;71(3):184-9. doi: 10.1212/01.wnl.0000317091.17339.98.
5
An acute ischemic stroke classification instrument that includes CT or MR angiography: the Boston Acute Stroke Imaging Scale.
AJNR Am J Neuroradiol. 2008 Jun;29(6):1111-7. doi: 10.3174/ajnr.A1000. Epub 2008 May 8.
6
Acute stroke imaging research roadmap.
Stroke. 2008 May;39(5):1621-8. doi: 10.1161/STROKEAHA.107.512319. Epub 2008 Apr 10.
7
Variability in language recovery after first-time stroke.
J Neurol Neurosurg Psychiatry. 2008 May;79(5):530-4. doi: 10.1136/jnnp.2007.122457. Epub 2007 Sep 10.
8
Reproducibility of quantitative tractography methods applied to cerebral white matter.
Neuroimage. 2007 Jul 1;36(3):630-44. doi: 10.1016/j.neuroimage.2007.02.049. Epub 2007 Mar 20.
9
Neural networks essential for naming and word comprehension.
Cogn Behav Neurol. 2007 Mar;20(1):25-30. doi: 10.1097/WNN.0b013e31802dc4a7.
10
Neuroanatomic correlates of stroke-related myocardial injury.
Neurology. 2006 May 9;66(9):1325-9. doi: 10.1212/01.wnl.0000206077.13705.6d. Epub 2006 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验