Suppr超能文献

脑膜炎奈瑟菌游离甲硫氨酸 R-亚砜还原酶的结构和生化特性。

Structural and biochemical characterization of free methionine-R-sulfoxide reductase from Neisseria meningitidis.

机构信息

Faculté des Sciences et Technologies, AREMS, UMR CNRS-UHP 7214, Nancy Université, Bld des Aiguillettes, BP 70239, 54506 Vandoeuvre-les-Nancy, France.

出版信息

J Biol Chem. 2010 Aug 6;285(32):25033-43. doi: 10.1074/jbc.M110.134528. Epub 2010 May 19.

Abstract

A new family of methionine-sulfoxide reductase (Msr) was recently described. The enzyme, named fRMsr, selectively reduces the R isomer at the sulfoxide function of free methionine sulfoxide (Met-R-O). The fRMsrs belong to the GAF fold family. They represent the first GAF domain to show enzymatic activity. Two other Msr families, MsrA and MsrB, were already known. MsrA and MsrB reduce free Met-S-O and Met-R-O, respectively, but exhibit higher catalytic efficiency toward Met-O within a peptide or a protein context. The fold of the three families differs. In the present work, the crystal structure of the fRMsr from Neisseria meningitidis has been determined in complex with S-Met-R-O. Based on biochemical and kinetic data as well as genomic analyses, Cys(118) is demonstrated to be the catalytic Cys on which a sulfenic acid is formed. All of the structural factors involved in the stereoselectivity of the l-Met-R-O binding were identified and account for why Met-S-O, DMSO, and a Met-O within a peptide are not substrates. Taking into account the structural, enzymatic, and biochemical information, a scenario of the catalysis for the reductase step is proposed. Based on the thiol content before and after Met-O reduction and the stoichiometry of Met formed per subunit of wild type and Cys-to-Ala mutants, a scenario of the recycling process of the N. meningitidis fRMsr is proposed. All of the biochemical, enzymatic, and structural properties of the N. meningitidis fRMsr are compared with those of MsrA and MsrB and are discussed in terms of the evolution of function of the GAF domain.

摘要

一个新的甲硫氨酸亚砜还原酶(Msr)家族最近被描述。这种酶被命名为 fRMsr,它选择性地还原游离甲硫氨酸亚砜(Met-R-O)的 R 异构体。fRMsr 属于 GAF 折叠家族。它们代表第一个具有酶活性的 GAF 结构域。另外两个 Msr 家族,MsrA 和 MsrB,已经为人所知。MsrA 和 MsrB 分别还原游离的 Met-S-O 和 Met-R-O,但在肽或蛋白质环境中对 Met-O 表现出更高的催化效率。这三个家族的结构不同。在本研究中,已经确定了脑膜炎奈瑟菌 fRMsr 与 S-Met-R-O 复合物的晶体结构。基于生化和动力学数据以及基因组分析,证明 Cys(118)是形成亚磺酸的催化 Cys。鉴定了与 l-Met-R-O 结合的立体选择性相关的所有结构因素,并解释了为什么 Met-S-O、DMSO 和肽中的 Met-O 不是底物。考虑到结构、酶学和生化信息,提出了还原酶步骤催化的方案。根据 Met-O 还原前后的巯基含量以及野生型和 Cys-to-Ala 突变体每个亚基形成的 Met 的化学计量,提出了脑膜炎奈瑟菌 fRMsr 的循环过程的方案。所有的生化、酶学和结构特性脑膜炎奈瑟菌 fRMsr 与 MsrA 和 MsrB 进行了比较,并讨论了 GAF 结构域功能进化的问题。

相似文献

1
Structural and biochemical characterization of free methionine-R-sulfoxide reductase from Neisseria meningitidis.
J Biol Chem. 2010 Aug 6;285(32):25033-43. doi: 10.1074/jbc.M110.134528. Epub 2010 May 19.
2
Characterization of the methionine sulfoxide reductase activities of PILB, a probable virulence factor from Neisseria meningitidis.
J Biol Chem. 2002 Apr 5;277(14):12016-22. doi: 10.1074/jbc.M112350200. Epub 2002 Jan 25.
4
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602. doi: 10.1073/pnas.0703774104. Epub 2007 May 29.
8
Evidence for a new sub-class of methionine sulfoxide reductases B with an alternative thioredoxin recognition signature.
J Biol Chem. 2004 Oct 8;279(41):42462-8. doi: 10.1074/jbc.M407464200. Epub 2004 Jul 26.
9
Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.
J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.

引用本文的文献

1
The Methionine Sulfoxide Reductase (MsrA/B) Is a Surface Exposed, Immunogenic, Vaccine Candidate.
Front Immunol. 2019 Feb 6;10:137. doi: 10.3389/fimmu.2019.00137. eCollection 2019.
2
Molecular Mechanisms of the Methionine Sulfoxide Reductase System from .
Antioxidants (Basel). 2018 Oct 1;7(10):131. doi: 10.3390/antiox7100131.
3
Methionine Sulfoxide Reductases of Archaea.
Antioxidants (Basel). 2018 Sep 20;7(10):124. doi: 10.3390/antiox7100124.
4
Role of the VirA histidine autokinase of Agrobacterium tumefaciens in the initial steps of pathogenesis.
Front Plant Sci. 2014 May 14;5:195. doi: 10.3389/fpls.2014.00195. eCollection 2014.
5
Structures of the PelD cyclic diguanylate effector involved in pellicle formation in Pseudomonas aeruginosa PAO1.
J Biol Chem. 2012 Aug 31;287(36):30191-204. doi: 10.1074/jbc.M112.378273. Epub 2012 Jul 17.
6
Deep sequencing whole transcriptome exploration of the σE regulon in Neisseria meningitidis.
PLoS One. 2011;6(12):e29002. doi: 10.1371/journal.pone.0029002. Epub 2011 Dec 15.
7
Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium.
PLoS One. 2011;6(11):e26974. doi: 10.1371/journal.pone.0026974. Epub 2011 Nov 2.
8
Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2.
Proteins. 2011 Nov;79(11):3123-31. doi: 10.1002/prot.23141. Epub 2011 Aug 30.
9
Selective reduction of methylsulfinyl-containing compounds by mammalian MsrA suggests a strategy for improved drug efficacy.
ACS Chem Biol. 2011 Oct 21;6(10):1029-35. doi: 10.1021/cb2001395. Epub 2011 Aug 22.
10
Substrate binding in free methionine-R-sulfoxide reductase.
J Biol Chem. 2010 Sep 24;285(39):le17; author reply le18. doi: 10.1074/jbc.L110.103119.

本文引用的文献

1
Methionine sulfoxide reductase B displays a high level of flexibility.
J Mol Biol. 2009 Nov 20;394(1):83-93. doi: 10.1016/j.jmb.2009.08.073. Epub 2009 Sep 4.
2
Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.
J Biol Chem. 2009 Feb 13;284(7):4354-64. doi: 10.1074/jbc.M805891200. Epub 2008 Dec 2.
4
The methionine sulfoxide reductases: Catalysis and substrate specificities.
Arch Biochem Biophys. 2008 Jun 15;474(2):266-73. doi: 10.1016/j.abb.2008.02.007. Epub 2008 Feb 13.
5
A structural analysis of the catalytic mechanism of methionine sulfoxide reductase A from Neisseria meningitidis.
J Mol Biol. 2008 Mar 14;377(1):268-80. doi: 10.1016/j.jmb.2008.01.021. Epub 2008 Jan 16.
7
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9597-602. doi: 10.1073/pnas.0703774104. Epub 2007 May 29.
9
Structural analysis of a set of proteins resulting from a bacterial genomics project.
Proteins. 2005 Sep 1;60(4):787-96. doi: 10.1002/prot.20541.
10
Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3082-7. doi: 10.1073/pnas.0409913102. Epub 2005 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验