Gaylord T K, Glytsis E N, Moharam M G
Appl Opt. 1987 Aug 1;26(15):3123-35. doi: 10.1364/AO.26.003123.
The required thickness and complex refractive index of single homogeneous layers on lossy substrates to produce zero reflectivity are calculated by a rigorous impedance matching approach. The analysis is applicable to both TE and TM polarization and to any angle of incidence. The filling factor and groove depth of a rectangular-groove grating, equivalent to a single homogeneous lossy layer in the long-wavelength limit, are calculated. The method reduces to that previously found for dielectric surface-relief gratings in the limit of no losses. The antireflection behavior of the gratings is verified using the rigorous (without approximations) coupled-wave analysis of metallic surface-relief grating diffraction. It is shown that multiple zeroreflectivity solutions exist for both TE and TM polarizations and for any angle of incidence for an arbitrary complex-refractive-index substrate. Example zero-reflectivity gold gratings for incident free space wavelengths from 0.44 to 12.0 microm are presented.
通过一种严格的阻抗匹配方法,计算了有损衬底上产生零反射率所需的单层均匀层的厚度和复折射率。该分析适用于TE和TM偏振以及任何入射角。计算了矩形槽光栅的填充因子和槽深,该光栅在长波长极限下等效于单个均匀有损层。在无损耗极限情况下,该方法简化为先前针对介质表面起伏光栅所发现的方法。使用金属表面起伏光栅衍射的严格(无近似)耦合波分析验证了光栅的抗反射行为。结果表明,对于任意复折射率衬底,TE和TM偏振以及任何入射角都存在多个零反射率解。给出了入射自由空间波长从0.44到12.0微米的零反射率金光栅示例。