Suppr超能文献

相似文献

1
Cranioectodermal Dysplasia, Sensenbrenner syndrome, is a ciliopathy caused by mutations in the IFT122 gene.
Am J Hum Genet. 2010 Jun 11;86(6):949-56. doi: 10.1016/j.ajhg.2010.04.012. Epub 2010 May 20.
2
Novel IFT122 mutations in three Argentinian patients with cranioectodermal dysplasia: Expanding the mutational spectrum.
Am J Med Genet A. 2016 May;170A(5):1295-301. doi: 10.1002/ajmg.a.37570. Epub 2016 Jan 21.
4
Intrafamilial phenotypic variability in a Polish family with Sensenbrenner syndrome and biallelic WDR35 mutations.
Am J Med Genet A. 2017 May;173(5):1364-1368. doi: 10.1002/ajmg.a.38163. Epub 2017 Mar 23.
6
A novel combination of biallelic IFT122 variants associated with cranioectodermal dysplasia: A case report.
Exp Ther Med. 2021 Apr;21(4):311. doi: 10.3892/etm.2021.9742. Epub 2021 Feb 1.
7
Prenatal genetic diagnosis of cranioectodermal dysplasia in a Polish family with compound heterozygous variants in WDR35.
Am J Med Genet A. 2020 Oct;182(10):2417-2425. doi: 10.1002/ajmg.a.61785. Epub 2020 Aug 17.
9
C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome.
J Med Genet. 2011 Jun;48(6):390-5. doi: 10.1136/jmg.2011.088864. Epub 2011 Mar 4.
10
Novel IFT122 mutation associated with impaired ciliogenesis and cranioectodermal dysplasia.
Mol Genet Genomic Med. 2014 Mar;2(2):103-6. doi: 10.1002/mgg3.44. Epub 2013 Dec 10.

引用本文的文献

1
FGFR2 residence in primary cilia is necessary for epithelial cell signaling.
J Cell Biol. 2025 Jul 7;224(7). doi: 10.1083/jcb.202311030. Epub 2025 Apr 21.
3
The primary cilia: Orchestrating cranial neural crest cell development.
Differentiation. 2025 Mar-Apr;142:100818. doi: 10.1016/j.diff.2024.100818. Epub 2024 Oct 30.
4
Molecular and structural perspectives on protein trafficking to the primary cilium membrane.
Biochem Soc Trans. 2024 Jun 26;52(3):1473-1487. doi: 10.1042/BST20231403.
5
Primary cilia and actin regulatory pathways in renal ciliopathies.
Front Nephrol. 2024 Jan 16;3:1331847. doi: 10.3389/fneph.2023.1331847. eCollection 2023.
6
Nephronophthisis: a pathological and genetic perspective.
Pediatr Nephrol. 2024 Jul;39(7):1977-2000. doi: 10.1007/s00467-023-06174-8. Epub 2023 Nov 6.
7
Cellular Signaling for Dental Physiological Functions.
Biomolecules. 2023 Jul 28;13(8):1177. doi: 10.3390/biom13081177.
8
Differential gene expression in the calvarial and cortical bone of juvenile female mice.
Front Endocrinol (Lausanne). 2023 Jun 12;14:1127536. doi: 10.3389/fendo.2023.1127536. eCollection 2023.
9
Skeletal ciliopathy: pathogenesis and related signaling pathways.
Mol Cell Biochem. 2024 Apr;479(4):811-823. doi: 10.1007/s11010-023-04765-5. Epub 2023 May 15.
10
Human IFT-A complex structures provide molecular insights into ciliary transport.
Cell Res. 2023 Apr;33(4):288-298. doi: 10.1038/s41422-023-00778-3. Epub 2023 Feb 13.

本文引用的文献

1
Cranioectodermal dysplasia: a probable ciliopathy.
Am J Med Genet A. 2009 Oct;149A(10):2206-11. doi: 10.1002/ajmg.a.33013.
2
Connective tissue involvement in two patients with features of cranioectodermal dysplasia.
Am J Med Genet A. 2009 Oct;149A(10):2212-5. doi: 10.1002/ajmg.a.33027.
3
DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III.
Am J Hum Genet. 2009 May;84(5):706-11. doi: 10.1016/j.ajhg.2009.04.016.
5
Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling.
Curr Top Dev Biol. 2008;85:23-61. doi: 10.1016/S0070-2153(08)00802-8.
7
Restoration of renal function in zebrafish models of ciliopathies.
Pediatr Nephrol. 2008 Nov;23(11):2095-9. doi: 10.1007/s00467-008-0898-7. Epub 2008 Jul 5.
8
The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.
Dev Dyn. 2008 Aug;237(8):1960-71. doi: 10.1002/dvdy.21515.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验