Department of Neurology and Neurosurgery, Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
Neuroscience. 2010 Aug 25;169(2):932-49. doi: 10.1016/j.neuroscience.2010.05.025. Epub 2010 May 21.
DCC (deleted in colorectal cancer), a receptor for the axon guidance cue netrin-1, is highly expressed by mesencephalic dopaminergic (DA) neurons during development; however, the contribution of DCC to DA development remains largely uncharacterized. DA neurons in ventral mesencephalic nuclei also express UNC5 homologue netrin receptors from late embryogenesis to adulthood, raising the possibility that DA axons could be attracted or repelled by netrins. Examining newborn dcc null mice, we report that loss of DCC function results in profound alterations of DA circuitry, including DA progenitor cell migration defects, reduced numbers of DA cells in midbrain nuclei, an anomalous DA ventral commissure, malformed DA innervation of the ventral striatum, and reduced DA innervation of the cerebral cortex. Caspase-3 activation was detected in inappropriately localized DA cells, consistent with apoptosis contributing to reduced cell numbers. Dcc heterozygous mice express reduced levels of DCC protein. Although less severely disrupted than dcc nulls, newborn and adult dcc heterozygotes also have fewer DA neurons in ventral mesenscephalic nuclei. Despite the reduced numbers of DA neurons, newborn dcc heterozygotes and nulls exhibit similar DA innervation density as wild-type littermates in the nucleus accumbens core, and adult dcc heterozygotes exhibit increased DA innervation in medial prefrontal cortex. A trend towards increased innervation of medial prefrontal cortex was detected in newborn dcc heterozygotes, but did not reach statistical significance, suggesting that the increase in adult heterozygotes results from enhanced DA arborization during postnatal development. Consistent with the hypothesis that DCC regulates DA axonal projections, disrupting DCC function in culture inhibits netrin-1 induced DA axon extension and axon branching. Furthermore, disrupting DCC function in isolated DA neurons grown as micro-island cultures reduces the number of autaptic synapses per cell. We conclude that DCC regulates appropriate precursor cell migration, axon guidance, and terminal arborization by DA neurons.
DCC(结直肠癌缺失)是轴突导向线索神经纤毛蛋白-1 的受体,在发育过程中高度表达中脑多巴胺能(DA)神经元;然而,DCC 对 DA 发育的贡献在很大程度上仍未得到充分描述。腹侧中脑核中的 DA 神经元也从胚胎晚期到成年表达 UNC5 同源神经纤毛蛋白受体,这增加了 DA 轴突可能被神经纤毛吸引或排斥的可能性。在检查新生的 dcc 基因敲除小鼠时,我们报告说,DCC 功能的丧失导致 DA 回路的深刻改变,包括 DA 祖细胞迁移缺陷、中脑核中 DA 细胞数量减少、异常的 DA 腹侧连合、DA 对腹侧纹状体的畸形支配以及 DA 对大脑皮层的支配减少。在定位不当的 DA 细胞中检测到 Caspase-3 激活,这与细胞数量减少的凋亡有关。Dcc 杂合子小鼠表达的 DCC 蛋白水平降低。尽管不如 dcc 基因敲除小鼠严重,但新生和成年的 dcc 杂合子小鼠中腹侧中脑核中的 DA 神经元也较少。尽管 DA 神经元数量减少,但新生的 dcc 杂合子和基因敲除小鼠在伏隔核核心中的 DA 支配密度与野生型同窝仔相似,而成年的 dcc 杂合子在内侧前额叶皮层中表现出增加的 DA 支配。在新生的 dcc 杂合子中检测到内侧前额叶皮层的支配增加趋势,但未达到统计学意义,这表明成年杂合子的增加是由于出生后发育过程中 DA 树突的增强分支造成的。与 DCC 调节 DA 轴突投射的假设一致,在培养中破坏 DCC 功能会抑制神经纤毛蛋白-1 诱导的 DA 轴突延伸和轴突分支。此外,在作为微岛培养物生长的分离的 DA 神经元中破坏 DCC 功能会减少每个细胞的自突触数。我们得出结论,DCC 通过调节 DA 神经元的适当前体细胞迁移、轴突导向和终末树突分支来调节 DA 神经元的发育。