University of Melbourne Department of Anatomy and Cell Biology, Victoria, Australia.
J Hum Evol. 2010 Jul;59(1):16-34. doi: 10.1016/j.jhevol.2010.01.009. Epub 2010 May 21.
Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure. Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation. Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.
大猩猩的变异模式与人类进化的研究密切相关。在这项研究中,我们使用臼齿形态计量学来评估大猩猩在地理上的变异模式。从赤道非洲大猩猩的当前分布中抽取了 323 个成年个体的牙齿标本,将其分为 14 个种群。使用判别分析和马氏距离来研究种群结构。结果表明:1)西部和东部大猩猩形成明显的聚类;2)克罗斯河大猩猩与其他西部种群明显分开;3)维龙加山脉和布温迪森林的大猩猩与乌图和姆文加-菲齐的低地大猩猩可以区分开来;4)齐亚贝鲁姆大猩猩与其他东部大猩猩不同,卡胡兹-别加大猩猩与它们有关联。这些发现为区分大猩猩和山地大猩猩提供了支持,其中包括亚种 G. g. diehli、G. g. gorilla、G. b. graueri、G. b. beringei 和可能的 G. b. rex-pygmaeorum。牙齿和其他分类多样性模式之间的明显对应表明,牙齿数据揭示了潜在的遗传分化模式。牙齿距离随着海拔的升高而增加,但与地理距离无关,这表明海拔隔离比隔离距离更好地解释了大猩猩种群分化的模式。大猩猩牙齿度量变化的系统地理模式支持了这样一种观点,即上新世-更新世的气候波动和非洲局部的山地建造活动影响了大猩猩的系统地理。我提出,西非构成了大猩猩分布的历史中心,并经历了漂变-基因流平衡,而尼日利亚和东非则处于边缘地带,那里的气候不稳定和海拔变化促进了漂变和遗传分化。对大猩猩种群结构的这种理解对大猩猩的保护以及理解黑猩猩和上新世-更新世人类的共存分布具有重要意义。