Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, United States.
Med Image Anal. 2010 Aug;14(4):563-81. doi: 10.1016/j.media.2010.04.002. Epub 2010 Apr 22.
We present a machine learning approach called shape regression machine (SRM) for efficient segmentation of an anatomic structure that exhibits a deformable shape in a medical image, e.g., left ventricle endocardial wall in an echocardiogram. The SRM achieves efficient segmentation via statistical learning of the interrelations among shape, appearance, and anatomy, which are exemplified by an annotated database. The SRM is a two-stage approach. In the first stage that estimates a rigid shape to solve an automatic initialization problem, it derives a regression solution to object detection that needs just one scan in principle and a sparse set of scans in practice, avoiding the exhaustive scanning required by the state-of-the-art classification-based detection approach while yielding comparable detection accuracy. In the second stage that estimates the nonrigid shape, it again learns a nonlinear regressor to directly associate nonrigid shape with image appearance. The underpinning of both stages is a novel image-based boosting ridge regression (IBRR) method that enables multivariate, nonlinear modeling and accommodates fast evaluation. We demonstrate the efficiency and effectiveness of the SRM using experiments on segmenting the left ventricle endocardium from a B-mode echocardiogram of apical four chamber view. The proposed algorithm is able to automatically detect and accurately segment the LV endocardial border in about 120ms.
我们提出了一种称为形状回归机(SRM)的机器学习方法,用于对在医学图像中呈现可变形形状的解剖结构进行高效分割,例如超声心动图中的左心室心内膜壁。SRM 通过对形状、外观和解剖结构之间的相互关系进行统计学习来实现高效分割,这些关系由带注释的数据库示例化。SRM 是一种两阶段方法。在第一阶段,它估计刚性形状以解决自动初始化问题,通过仅需要一次扫描的对象检测回归解决方案,在实践中需要稀疏的扫描集,从而避免了最先进的基于分类的检测方法所需的穷举扫描,同时产生可比的检测精度。在第二阶段,它再次学习非线性回归器,直接将非刚性形状与图像外观关联起来。这两个阶段的基础是一种新颖的基于图像的增强岭回归(IBRR)方法,它能够进行多变量、非线性建模,并适应快速评估。我们使用从心尖四腔视图的 B 模式超声心动图中分割左心室心内膜的实验来证明 SRM 的效率和有效性。所提出的算法能够在大约 120ms 内自动检测和准确分割 LV 心内膜边界。