Suppr超能文献

用于在计划CT图像中分割前列腺和直肠的局部约束边界回归

Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.

作者信息

Shao Yeqin, Gao Yaozong, Wang Qian, Yang Xin, Shen Dinggang

机构信息

Institute of Image Processing & Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200240, China; Nantong University, Jiangsu 226019, China.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, NC 27599, United States; Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, United States.

出版信息

Med Image Anal. 2015 Dec;26(1):345-56. doi: 10.1016/j.media.2015.06.007. Epub 2015 Oct 2.

Abstract

Automatic and accurate segmentation of the prostate and rectum in planning CT images is a challenging task due to low image contrast, unpredictable organ (relative) position, and uncertain existence of bowel gas across different patients. Recently, regression forest was adopted for organ deformable segmentation on 2D medical images by training one landmark detector for each point on the shape model. However, it seems impractical for regression forest to guide 3D deformable segmentation as a landmark detector, due to large number of vertices in the 3D shape model as well as the difficulty in building accurate 3D vertex correspondence for each landmark detector. In this paper, we propose a novel boundary detection method by exploiting the power of regression forest for prostate and rectum segmentation. The contributions of this paper are as follows: (1) we introduce regression forest as a local boundary regressor to vote the entire boundary of a target organ, which avoids training a large number of landmark detectors and building an accurate 3D vertex correspondence for each landmark detector; (2) an auto-context model is integrated with regression forest to improve the accuracy of the boundary regression; (3) we further combine a deformable segmentation method with the proposed local boundary regressor for the final organ segmentation by integrating organ shape priors. Our method is evaluated on a planning CT image dataset with 70 images from 70 different patients. The experimental results show that our proposed boundary regression method outperforms the conventional boundary classification method in guiding the deformable model for prostate and rectum segmentations. Compared with other state-of-the-art methods, our method also shows a competitive performance.

摘要

在计划CT图像中对前列腺和直肠进行自动且准确的分割是一项具有挑战性的任务,这是由于图像对比度低、器官(相对)位置不可预测以及不同患者肠道气体的存在情况不确定。最近,通过为形状模型上的每个点训练一个地标检测器,回归森林被用于二维医学图像的器官可变形分割。然而,由于三维形状模型中的顶点数量众多,以及为每个地标检测器建立精确的三维顶点对应关系存在困难,使用回归森林作为地标检测器来指导三维可变形分割似乎不切实际。在本文中,我们提出了一种新颖的边界检测方法,利用回归森林的能力进行前列腺和直肠分割。本文的贡献如下:(1)我们引入回归森林作为局部边界回归器,对目标器官的整个边界进行投票,这避免了训练大量地标检测器以及为每个地标检测器建立精确的三维顶点对应关系;(2)将自动上下文模型与回归森林相结合,以提高边界回归的准确性;(3)我们通过整合器官形状先验,进一步将可变形分割方法与所提出的局部边界回归器相结合,用于最终的器官分割。我们的方法在一个包含来自70名不同患者的70幅图像的计划CT图像数据集上进行了评估。实验结果表明,我们提出的边界回归方法在指导前列腺和直肠分割的可变形模型方面优于传统的边界分类方法。与其他当前最先进的方法相比,我们的方法也表现出了有竞争力的性能。

相似文献

1
Locally-constrained boundary regression for segmentation of prostate and rectum in the planning CT images.
Med Image Anal. 2015 Dec;26(1):345-56. doi: 10.1016/j.media.2015.06.007. Epub 2015 Oct 2.
3
Accurate Segmentation of CT Male Pelvic Organs via Regression-Based Deformable Models and Multi-Task Random Forests.
IEEE Trans Med Imaging. 2016 Jun;35(6):1532-43. doi: 10.1109/TMI.2016.2519264. Epub 2016 Jan 18.
5
A feature-based learning framework for accurate prostate localization in CT images.
IEEE Trans Image Process. 2012 Aug;21(8):3546-59. doi: 10.1109/TIP.2012.2194296. Epub 2012 Apr 9.
6
3D meshless prostate segmentation and registration in image guided radiotherapy.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):43-50. doi: 10.1007/978-3-642-04268-3_6.
8
Segmenting the prostate and rectum in CT imagery using anatomical constraints.
Med Image Anal. 2011 Feb;15(1):1-11. doi: 10.1016/j.media.2010.06.004. Epub 2010 Jun 25.
9
Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
Med Image Anal. 2014 Apr;18(3):487-99. doi: 10.1016/j.media.2014.01.002. Epub 2014 Feb 5.

引用本文的文献

1
Auto-Segmentation and Auto-Planning in Automated Radiotherapy for Prostate Cancer.
Bioengineering (Basel). 2025 Jun 6;12(6):620. doi: 10.3390/bioengineering12060620.
2
Cascaded cross-attention transformers and convolutional neural networks for multi-organ segmentation in male pelvic computed tomography.
J Med Imaging (Bellingham). 2024 Mar;11(2):024009. doi: 10.1117/1.JMI.11.2.024009. Epub 2024 Apr 8.
3
Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network.
J Med Imaging (Bellingham). 2020 Sep;7(5):055001. doi: 10.1117/1.JMI.7.5.055001. Epub 2020 Oct 14.
4
CNN-based hierarchical coarse-to-fine segmentation of pelvic CT images for prostate cancer radiotherapy.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11315. doi: 10.1117/12.2549979. Epub 2020 Mar 16.
5
Iterative Label Denoising Network: Segmenting Male Pelvic Organs in CT From 3D Bounding Box Annotations.
IEEE Trans Biomed Eng. 2020 Oct;67(10):2710-2720. doi: 10.1109/TBME.2020.2969608. Epub 2020 Jan 27.
6
CT Male Pelvic Organ Segmentation via Hybrid Loss Network With Incomplete Annotation.
IEEE Trans Med Imaging. 2020 Jun;39(6):2151-2162. doi: 10.1109/TMI.2020.2966389. Epub 2020 Jan 13.
7
Deep learning-based three-dimensional segmentation of the prostate on computed tomography images.
J Med Imaging (Bellingham). 2019 Apr;6(2):025003. doi: 10.1117/1.JMI.6.2.025003. Epub 2019 May 3.
8
CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation.
Med Image Anal. 2019 May;54:168-178. doi: 10.1016/j.media.2019.03.003. Epub 2019 Mar 21.
10
Pelvic Organ Segmentation Using Distinctive Curve Guided Fully Convolutional Networks.
IEEE Trans Med Imaging. 2019 Feb;38(2):585-595. doi: 10.1109/TMI.2018.2867837. Epub 2018 Aug 30.

本文引用的文献

1
LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images.
Neuroimage. 2015 Mar;108:160-72. doi: 10.1016/j.neuroimage.2014.12.042. Epub 2014 Dec 22.
2
Rapid multi-organ segmentation using context integration and discriminative models.
Inf Process Med Imaging. 2013;23:450-62. doi: 10.1007/978-3-642-38868-2_38.
3
Segmentation of pelvic structures for planning CT using a geometrical shape model tuned by a multi-scale edge detector.
Phys Med Biol. 2014 Mar 21;59(6):1471-84. doi: 10.1088/0031-9155/59/6/1471. Epub 2014 Mar 5.
4
Automatic X-ray landmark detection and shape segmentation via data-driven joint estimation of image displacements.
Med Image Anal. 2014 Apr;18(3):487-99. doi: 10.1016/j.media.2014.01.002. Epub 2014 Feb 5.
5
6
Retinal layer segmentation of macular OCT images using boundary classification.
Biomed Opt Express. 2013 Jun 14;4(7):1133-52. doi: 10.1364/BOE.4.001133. Print 2013 Jul 1.
7
Fully automatic segmentation of the proximal femur using random forest regression voting.
IEEE Trans Med Imaging. 2013 Aug;32(8):1462-72. doi: 10.1109/TMI.2013.2258030. Epub 2013 Apr 12.
8
Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):462-9. doi: 10.1007/978-3-642-33418-4_57.
9
Sparse patch-based label propagation for accurate prostate localization in CT images.
IEEE Trans Med Imaging. 2013 Feb;32(2):419-34. doi: 10.1109/TMI.2012.2230018. Epub 2012 Nov 27.
10
Prostate segmentation by sparse representation based classification.
Med Phys. 2012 Oct;39(10):6372-87. doi: 10.1118/1.4754304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验