Department of Physiology, Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
Mol Cell Proteomics. 2011 Feb;10(2):M110.000117. doi: 10.1074/mcp.M110.000117. Epub 2010 May 22.
Mitochondrial functions are dynamically regulated in the heart. In particular, protein phosphorylation has been shown to be a key mechanism modulating mitochondrial function in diverse cardiovascular phenotypes. However, site-specific phosphorylation information remains scarce for this organ. Accordingly, we performed a comprehensive characterization of murine cardiac mitochondrial phosphoproteome in the context of mitochondrial functional pathways. A platform using the complementary fragmentation technologies of collision-induced dissociation (CID) and electron transfer dissociation (ETD) demonstrated successful identification of a total of 236 phosphorylation sites in the murine heart; 210 of these sites were novel. These 236 sites were mapped to 181 phosphoproteins and 203 phosphopeptides. Among those identified, 45 phosphorylation sites were captured only by CID, whereas 185 phosphorylation sites, including a novel modification on ubiquinol-cytochrome c reductase protein 1 (Ser-212), were identified only by ETD, underscoring the advantage of a combined CID and ETD approach. The biological significance of the cardiac mitochondrial phosphoproteome was evaluated. Our investigations illustrated key regulatory sites in murine cardiac mitochondrial pathways as targets of phosphorylation regulation, including components of the electron transport chain (ETC) complexes and enzymes involved in metabolic pathways (e.g. tricarboxylic acid cycle). Furthermore, calcium overload injured cardiac mitochondrial ETC function, whereas enhanced phosphorylation of ETC via application of phosphatase inhibitors restored calcium-attenuated ETC complex I and complex III activities, demonstrating positive regulation of ETC function by phosphorylation. Moreover, in silico analyses of the identified phosphopeptide motifs illuminated the molecular nature of participating kinases, which included several known mitochondrial kinases (e.g. pyruvate dehydrogenase kinase) as well as kinases whose mitochondrial location was not previously appreciated (e.g. Src). In conclusion, the phosphorylation events defined herein advance our understanding of cardiac mitochondrial biology, facilitating the integration of the still fragmentary knowledge about mitochondrial signaling networks, metabolic pathways, and intrinsic mechanisms of functional regulation in the heart.
线粒体功能在心脏中是动态调节的。特别是,蛋白质磷酸化已被证明是调节不同心血管表型中线粒体功能的关键机制。然而,这个器官的特定部位磷酸化信息仍然很少。因此,我们在涉及线粒体功能途径的背景下对小鼠心脏线粒体磷酸蛋白质组进行了全面描述。使用互补的碎裂技术(CID 和 ETD)的平台成功地鉴定了总共 236 个位于小鼠心脏中的磷酸化位点,其中 210 个是新的。这些 236 个位点被映射到 181 个磷酸蛋白和 203 个磷酸肽。在鉴定出的这些位点中,有 45 个磷酸化位点仅通过 CID 捕获,而 185 个磷酸化位点,包括泛醌-细胞色素 c 还原酶蛋白 1(Ser-212)上的一个新修饰,仅通过 ETD 鉴定,凸显了 CID 和 ETD 结合方法的优势。还评估了心脏线粒体磷酸蛋白质组的生物学意义。我们的研究说明了作为磷酸化调节靶点的小鼠心脏线粒体途径中的关键调节位点,包括电子传递链(ETC)复合物的组成部分和参与代谢途径(例如三羧酸循环)的酶。此外,钙超载会损伤心脏线粒体 ETC 功能,而通过应用磷酸酶抑制剂增强 ETC 的磷酸化则恢复了钙减弱的 ETC 复合物 I 和复合物 III 活性,证明了磷酸化对 ETC 功能的正向调节。此外,对鉴定出的磷酸肽基序的计算分析阐明了参与激酶的分子性质,其中包括几种已知的线粒体激酶(例如丙酮酸脱氢酶激酶)以及以前未被注意到线粒体位置的激酶(例如 Src)。总之,本文定义的磷酸化事件推进了我们对心脏线粒体生物学的理解,促进了对心脏中线粒体信号网络、代谢途径和功能调节内在机制的零碎知识的整合。