文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体磷酸化蛋白质组在不同组织中具有功能特异性。

Mitochondrial phosphoproteomes are functionally specialized across tissues.

机构信息

https://ror.org/04py35477 Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.

https://ror.org/056d84691 Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.

出版信息

Life Sci Alliance. 2023 Nov 20;7(2). doi: 10.26508/lsa.202302147. Print 2024 Feb.


DOI:10.26508/lsa.202302147
PMID:37984987
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10662294/
Abstract

Mitochondria are essential organelles whose dysfunction causes human pathologies that often manifest in a tissue-specific manner. Accordingly, mitochondrial fitness depends on versatile proteomes specialized to meet diverse tissue-specific requirements. Increasing evidence suggests that phosphorylation may play an important role in regulating tissue-specific mitochondrial functions and pathophysiology. Building on recent advances in mass spectrometry (MS)-based proteomics, we here quantitatively profile mitochondrial tissue proteomes along with their matching phosphoproteomes. We isolated mitochondria from mouse heart, skeletal muscle, brown adipose tissue, kidney, liver, brain, and spleen by differential centrifugation followed by separation on Percoll gradients and performed high-resolution MS analysis of the proteomes and phosphoproteomes. This in-depth map substantially quantifies known and predicted mitochondrial proteins and provides a resource of core and tissue-specific mitochondrial proteins (mitophos.de). Predicting kinase substrate associations for different mitochondrial compartments indicates tissue-specific regulation at the phosphoproteome level. Illustrating the functional value of our resource, we reproduce mitochondrial phosphorylation events on dynamin-related protein 1 responsible for its mitochondrial recruitment and fission initiation and describe phosphorylation clusters on MIGA2 linked to mitochondrial fusion.

摘要

线粒体是必不可少的细胞器,其功能障碍会导致人类疾病,这些疾病通常以组织特异性的方式表现出来。因此,线粒体的适应性取决于专门满足各种组织特异性需求的多功能蛋白质组。越来越多的证据表明,磷酸化可能在调节组织特异性线粒体功能和病理生理学方面发挥重要作用。本研究基于基于质谱(MS)的蛋白质组学的最新进展,我们定量分析了线粒体组织蛋白质组及其匹配的磷酸化蛋白质组。我们通过差速离心从小鼠心脏、骨骼肌、棕色脂肪组织、肾脏、肝脏、大脑和脾脏中分离出线粒体,然后用 Percoll 梯度进行分离,并对蛋白质组和磷酸化蛋白质组进行高分辨率 MS 分析。这个深入的图谱大大定量了已知和预测的线粒体蛋白,并提供了核心和组织特异性线粒体蛋白的资源(mitophos.de)。预测不同线粒体区室的激酶底物关联表明在磷酸化蛋白质组水平上存在组织特异性调节。为了说明我们资源的功能价值,我们重现了与线粒体募集和裂变起始有关的动力相关蛋白 1 的线粒体磷酸化事件,并描述了与线粒体融合有关的 MIGA2 上的磷酸化簇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/cc28dd45b195/LSA-2023-02147_Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/2b0a511d391f/LSA-2023-02147_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/ecb5855794f8/LSA-2023-02147_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/2402e1e53594/LSA-2023-02147_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/c4531d549bb3/LSA-2023-02147_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/b750dd9bcf9a/LSA-2023-02147_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/d007b41a8a8b/LSA-2023-02147_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/e3bcb5558ba1/LSA-2023-02147_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/64d283511fa2/LSA-2023-02147_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/cfde63ca29c3/LSA-2023-02147_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/bb3a74a80806/LSA-2023-02147_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/138365cc4fc9/LSA-2023-02147_FigS5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/47c888f0d644/LSA-2023-02147_FigS6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/7e4f04e193b3/LSA-2023-02147_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/89f0cfd8ca6a/LSA-2023-02147_FigS7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/cc28dd45b195/LSA-2023-02147_Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/2b0a511d391f/LSA-2023-02147_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/ecb5855794f8/LSA-2023-02147_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/2402e1e53594/LSA-2023-02147_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/c4531d549bb3/LSA-2023-02147_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/b750dd9bcf9a/LSA-2023-02147_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/d007b41a8a8b/LSA-2023-02147_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/e3bcb5558ba1/LSA-2023-02147_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/64d283511fa2/LSA-2023-02147_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/cfde63ca29c3/LSA-2023-02147_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/bb3a74a80806/LSA-2023-02147_Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/138365cc4fc9/LSA-2023-02147_FigS5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/47c888f0d644/LSA-2023-02147_FigS6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/7e4f04e193b3/LSA-2023-02147_Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/89f0cfd8ca6a/LSA-2023-02147_FigS7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb1/10662294/cc28dd45b195/LSA-2023-02147_Fig8.jpg

相似文献

[1]
Mitochondrial phosphoproteomes are functionally specialized across tissues.

Life Sci Alliance. 2024-2

[2]
Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle.

J Proteome Res. 2013-9-13

[3]
Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes.

Mol Cell Proteomics. 2010-9-10

[4]
Proteome differences between brown and white fat mitochondria reveal specialized metabolic functions.

Cell Metab. 2009-10

[5]
Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.

J Proteome Res. 2013-9-6

[6]
Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints.

Am J Physiol Endocrinol Metab. 2019-6-18

[7]
The extensive and functionally uncharacterized mitochondrial phosphoproteome.

J Biol Chem. 2021-7

[8]
Mitochondrial phosphoproteomics of mammalian tissues.

Mitochondrion. 2017-3

[9]
Mitochondrial Proteomes in Neural Cells: A Systematic Review.

Biomolecules. 2023-11-11

[10]
A mitochondrial proteome profile indicative of type 2 diabetes mellitus in skeletal muscles.

Exp Mol Med. 2018-9-28

引用本文的文献

[1]
A Platform for Mitochondrial Profiling in Enriched Kidney Segments Under Thermodynamic Control.

bioRxiv. 2025-5-9

[2]
Proteomic Profiling Towards a Better Understanding of Genetic Based Muscular Diseases: The Current Picture and a Look to the Future.

Biomolecules. 2025-1-15

[3]
MitoMAMMAL: a genome scale model of mammalian mitochondria predicts cardiac and BAT metabolism.

Bioinform Adv. 2024-11-5

[4]
Systematic mapping of mitochondrial calcium uniporter channel (MCUC)-mediated calcium signaling networks.

EMBO J. 2024-11

[5]
Mitochondrial membrane lipids in the regulation of bioenergetic flux.

Cell Metab. 2024-9-3

[6]
Neuronal Ceroid Lipofuscinosis in a Mixed-Breed Dog with a Splice Site Variant in .

Genes (Basel). 2024-5-23

[7]
Space radiation damage rescued by inhibition of key spaceflight associated miRNAs.

Nat Commun. 2024-6-11

[8]
Mitochondrial dysfunction in brain tissues and Extracellular Vesicles Fragile X-associated tremor/ataxia syndrome.

Ann Clin Transl Neurol. 2024-6

[9]
Bioorthogonal photocatalytic proximity labeling in primary living samples.

Nat Commun. 2024-3-28

[10]
PPTC7 maintains mitochondrial protein content by suppressing receptor-mediated mitophagy.

Nat Commun. 2023-10-13

本文引用的文献

[1]
Ultrastructural and proteomic profiling of mitochondria-associated endoplasmic reticulum membranes reveal aging signatures in striated muscle.

Cell Death Dis. 2022-4-2

[2]
Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context.

Cell Metab. 2021-12-7

[3]
Mitochondrial Protein PGAM5 Emerges as a New Regulator in Neurological Diseases.

Front Mol Neurosci. 2021-9-23

[4]
AlphaMap: an open-source Python package for the visual annotation of proteomics data with sequence-specific knowledge.

Bioinformatics. 2022-1-12

[5]
Mitochondria-plasma membrane interactions and communication.

J Biol Chem. 2021-10

[6]
A novel PGAM5 inhibitor LFHP-1c protects blood-brain barrier integrity in ischemic stroke.

Acta Pharm Sin B. 2021-7

[7]
Highly accurate protein structure prediction with AlphaFold.

Nature. 2021-8

[8]
The extensive and functionally uncharacterized mitochondrial phosphoproteome.

J Biol Chem. 2021-7

[9]
mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts.

Mol Biol. 2021

[10]
Stable Isotope Labeling of Amino Acids in Flies (SILAF) Reveals Differential Phosphorylation of Mitochondrial Proteins Upon Loss of OXPHOS Subunits.

Mol Cell Proteomics. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索