延伸枕颈内固定装置至下颈椎的生物力学意义。

Biomechanical implications of extending occipitocervical instrumentation to include the subaxial spine.

机构信息

Department of Neurosurgery, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

出版信息

Neurosurgery. 2010 Jun;66(6):1148-52; discussion 1152. doi: 10.1227/01.NEU.0000369611.97009.B2.

Abstract

BACKGROUND

No clear biomechanical data exist regarding where to place the caudal end of a screw-rod occipitocervical instrumentation construct.

OBJECTIVE

This study examines whether range of motion (ROM) from the occiput to C2 is altered by subaxial extension of occipitocervical instrumentation constructs.

METHODS

Cadaver specimens underwent intact biomechanical testing followed by destabilization via an odontoid osteotomy. Subsequent biomechanical testing was performed of four occipitocervical constructs: occipital plate + C2 pars screws (construct 1), occipital plate + C2 pars screws + C4 lateral mass screws (construct 2), occipital plate + C1-C2 transarticular screws (construct 3), and occipital plate + C1-C2 transarticular screws + C4 lateral mass screws (construct 4).

RESULTS

All constructs significantly reduced occiput-C2 ROM in all loading modes compared with the intact cervical spine, with one exception (construct 1, lateral bending). No significant ROM differences were noted when C4 lateral mass screws (construct 4) were added to construct 3. Addition of C4 lateral mass screws (construct 2) to construct 1 decreased the ROM in the flexion mode only. No significant ROM differences were seen between construct 2 and construct 3 in any loading mode.

CONCLUSION

The addition of subaxial instrumentation to occipitocervical instrumentation constructs in this study decreased occiput-C2 ROM only when the construct was anchored by C2 pars screws and only in flexion. Screws that cross the C1 to C2 articulation provide stable fixation when combined with an occipital plate, and the addition of subaxial instrumentation to this construct for stabilizing the occipitocervical junction does not significantly decrease ROM.

摘要

背景

目前尚无明确的生物力学数据表明螺钉棒枕颈内固定结构的尾端应置于何处。

目的

本研究旨在探讨枕颈内固定结构的下颈椎延伸是否会改变寰枢椎的活动度(ROM)。

方法

对尸体标本进行完整的生物力学测试,然后通过齿状突骨切开术进行失稳。随后对四种枕颈内固定结构进行生物力学测试:枕骨板+C2 椎弓根螺钉(结构 1)、枕骨板+C2 椎弓根螺钉+C4 侧块螺钉(结构 2)、枕骨板+C1-C2 关节突螺钉(结构 3)和枕骨板+C1-C2 关节突螺钉+C4 侧块螺钉(结构 4)。

结果

与完整颈椎相比,所有结构在所有加载模式下均显著降低了寰椎-C2 的 ROM,仅有一个例外(结构 1,侧屈)。当向结构 3 添加 C4 侧块螺钉(结构 4)时,没有观察到 ROM 差异。当向结构 1 添加 C4 侧块螺钉(结构 2)时,仅在屈曲模式下降低了 ROM。在任何加载模式下,结构 2 和结构 3 之间均未观察到 ROM 差异。

结论

本研究中,在下颈椎内固定结构上增加附加装置仅在结构通过 C2 椎弓根螺钉固定且仅在屈曲时才会降低寰枢椎 ROM。穿过 C1 至 C2 关节的螺钉与枕骨板结合使用时可提供稳定的固定,在该结构上增加下颈椎内固定结构以稳定枕颈交界区不会显著降低 ROM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索