CIISA, Faculdade de Medicina Veterinária, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal.
Biochemistry. 2010 Jul 27;49(29):6193-205. doi: 10.1021/bi1006139.
The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored. Here we show that a family 35 CBM member (CBM35), designated CtCBM35-Gal, binds to alpha-D-galactose (Gal) and, within the context of the plant cell wall, targets the alpha-1,6-Gal residues of galactomannan but not the beta-D-Gal residues in xyloglucan. The crystal structure of CtCBM35-Gal reveals a canonical beta-sandwich fold. Site-directed mutagenesis studies showed that the ligand is accommodated within the loops that connect the two beta-sheets. Although the ligand binding site of the CBM displays significant structural similarity with calcium-dependent CBM35s that target uronic acids, subtle differences in the conformation of conserved residues in the ligand binding site lead to the loss of metal binding and uronate recognition. A model is proposed in which the orientation of the pair of aromatic residues that interact with the two faces of the Gal pyranose ring plays a pivotal role in orientating the axial O4 atom of the ligand toward Asn140, which is invariant in CBM35. The ligand recognition site of exo-CBM35s (CBM35-Gal and the uronic acid binding CBM35s) appears to overlap with that of CBM35-Man, which binds to the internal regions of mannan, a beta-polymer of mannose. Using site-directed mutagenesis, we show that although there is conservation of several functional residues within the binding sites of endo- and exo-CBM35s, the endo-CBM does not utilize Asn113 (equivalent to Asn140 in CBM35-Gal) in mannan binding, despite the importance of the equivalent residue in ligand recognition across the CBM35 and CBM6 landscape. The data presented in this report are placed within a wider phylogenetic context for the CBM35 family.
植物细胞壁的解构是一个重要的生物学过程,引起了人们的广泛关注,尤其是在生物能源领域。攻击植物细胞壁的酶通常含有一个或多个非催化的碳水化合物结合模块(CBMs),这些模块发挥着重要的靶向功能。虽然已经广泛描述了与植物结构多糖骨架结合的 CBMs,但识别这些聚合物上大量装饰成分的模块相对来说还没有被探索过。在这里,我们展示了一个家族 35 CBM 成员(CBM35),被指定为 CtCBM35-Gal,它与 alpha-D-半乳糖(Gal)结合,并在植物细胞壁的背景下,靶向半乳甘露聚糖的 alpha-1,6-Gal 残基,但不靶向木葡聚糖中的 beta-D-Gal 残基。CtCBM35-Gal 的晶体结构揭示了一个典型的β-三明治折叠。定点突变研究表明,配体被容纳在连接两个β-片的环中。虽然 CBM 的配体结合位点与靶向糖醛酸的钙依赖 CBM35 具有显著的结构相似性,但在配体结合位点中保守残基的构象上的细微差异导致了金属结合和糖醛酸识别的丧失。提出了一个模型,其中一对与 Gal 吡喃糖环的两个面相互作用的芳香族残基的取向,在将配体的轴向 O4 原子朝向 CBM35 中不变的 Asn140 定向方面起着关键作用。外切 CBM35(CBM35-Gal 和结合糖醛酸的 CBM35)的配体识别位点似乎与结合甘露聚糖(一种甘露糖的β-聚合物)内部区域的内切 CBM35-Man 的位点重叠。通过定点突变,我们表明,尽管在内切和外切 CBM35 的结合位点中存在几个功能残基的保守性,但在内切 CBM35 中,尽管在 CBM35 和 CBM6 景观中,等效残基在配体识别中很重要,但在甘露聚糖结合中并不利用 Asn113(相当于 CBM35-Gal 中的 Asn140)。本报告中提供的数据被放置在 CBM35 家族的更广泛的系统发育背景中。