Suppr超能文献

木聚糖特异性 Xyn30D 及其附着的 CBM35 结构域的结构分析揭示了模块性在特异性中的作用。

Structural analysis of glucuronoxylan-specific Xyn30D and its attached CBM35 domain gives insights into the role of modularity in specificity.

机构信息

From the Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física Rocasolano, CSIC, 28006 Madrid, Spain and.

the Departamento de Microbiología, Facultad de Biología. Universidad de Barcelona. 08028 Barcelona, Spain.

出版信息

J Biol Chem. 2014 Nov 7;289(45):31088-101. doi: 10.1074/jbc.M114.597732. Epub 2014 Sep 8.

Abstract

Glucuronoxylanase Xyn30D is a modular enzyme containing a family 30 glycoside hydrolase catalytic domain and an attached carbohydrate binding module of the CBM35 family. We present here the three-dimensional structure of the full-length Xyn30D at 2.4 Å resolution. The catalytic domain folds into an (α/β)8 barrel with an associated β-structure, whereas the attached CBM35 displays a jellyroll β-sandwich including two calcium ions. Although both domains fold in an independent manner, the linker region makes polar interactions with the catalytic domain, allowing a moderate flexibility. The ancillary Xyn30D-CBM35 domain has been expressed and crystallized, and its binding abilities have been investigated by soaking experiments. Only glucuronic acid-containing ligands produced complexes, and their structures have been solved. A calcium-dependent glucuronic acid binding site shows distinctive structural features as compared with other uronic acid-specific CBM35s, because the presence of two aromatic residues delineates a wider pocket. The nonconserved Glu(129) makes a bidentate link to calcium and defines region E, previously identified as specificity hot spot. The molecular surface of Xyn30D-CBM35 shows a unique stretch of negative charge distribution extending from its binding pocket that might indicate some oriented interaction with its target substrate. The binding ability of Xyn30D-CBM35 to different xylans was analyzed by affinity gel electrophoresis. Some binding was observed with rye glucuronoarabinoxylan in presence of calcium chelating EDTA, which would indicate that Xyn30D-CBM35 might establish interaction to other components of xylan, such as arabinose decorations of glucuronoarabinoxylan. A role in depolymerization of highly substituted chemically complex xylans is proposed.

摘要

木聚糖酶 Xyn30D 是一种模块化酶,包含一个家族 30 糖苷水解酶催化结构域和一个附着的碳水化合物结合模块 CBM35 家族。我们在这里呈现了全长 Xyn30D 在 2.4 Å 分辨率下的三维结构。催化结构域折叠成一个(α/β)8 桶,带有一个相关的β结构,而附着的 CBM35 显示出一个包括两个钙离子的果冻卷β-夹层。尽管两个结构域以独立的方式折叠,但连接区与催化结构域形成极性相互作用,允许适度的灵活性。辅助的 Xyn30D-CBM35 结构域已被表达和结晶,并通过浸泡实验研究了其结合能力。只有含有葡萄糖醛酸的配体产生复合物,并且已经解决了它们的结构。一个依赖钙的葡萄糖醛酸结合位点显示出与其他糖醛酸特异性 CBM35 相比具有独特的结构特征,因为两个芳香族残基的存在划定了一个更宽的口袋。非保守的 Glu(129)与钙形成双配位,并定义了区域 E,这是以前确定的特异性热点。Xyn30D-CBM35 的分子表面显示出独特的负电荷分布延伸从其结合口袋,这可能表明与靶底物的某种定向相互作用。通过亲和凝胶电泳分析了 Xyn30D-CBM35 对不同木聚糖的结合能力。在存在钙螯合 EDTA 的情况下,观察到与黑麦葡甘露木聚糖的一些结合,这表明 Xyn30D-CBM35 可能与木聚糖的其他成分建立相互作用,例如葡甘露木聚糖的阿拉伯糖修饰。提出了在高度取代的化学复杂木聚糖的解聚中发挥作用的假设。

相似文献

2
Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module.
Appl Environ Microbiol. 2012 Jun;78(11):3923-31. doi: 10.1128/AEM.07932-11. Epub 2012 Mar 23.
3
Crystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis.
Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt 7):963-6. doi: 10.1107/S2053230X14012035. Epub 2014 Jun 19.
8
Conservation in the mechanism of glucuronoxylan hydrolysis revealed by the structure of glucuronoxylan xylanohydrolase (CtXyn30A) from Clostridium thermocellum.
Acta Crystallogr D Struct Biol. 2016 Nov 1;72(Pt 11):1162-1173. doi: 10.1107/S2059798316014376. Epub 2016 Oct 28.
10
The multi-ligand binding first family 35 Carbohydrate Binding Module (CBM35) of Clostridium thermocellum targets rhamnogalacturonan I.
Arch Biochem Biophys. 2018 Sep 15;654:194-208. doi: 10.1016/j.abb.2018.07.023. Epub 2018 Aug 3.

引用本文的文献

1
Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus : Special Emphasis on the Novel Xylanolytic sp. LS1.
Microbiol Spectr. 2023 Jun 15;11(3):e0502822. doi: 10.1128/spectrum.05028-22. Epub 2023 Apr 18.
4
Novel Nematode-Killing Protein-1 (Nkp-1) from a Marine Epiphytic Bacterium .
Biomedicines. 2021 Oct 30;9(11):1586. doi: 10.3390/biomedicines9111586.
5
A New Subfamily of Glycoside Hydrolase Family 30 with Strict Xylobiohydrolase Function.
Front Mol Biosci. 2021 Sep 7;8:714238. doi: 10.3389/fmolb.2021.714238. eCollection 2021.
7
A novel bacterial GH30 xylobiohydrolase from Hungateiclostridium clariflavum.
Appl Microbiol Biotechnol. 2021 Jan;105(1):185-195. doi: 10.1007/s00253-020-11023-x. Epub 2020 Nov 20.
8
A novel fungal GH30 xylanase with xylobiohydrolase auxiliary activity.
Biotechnol Biofuels. 2019 May 11;12:120. doi: 10.1186/s13068-019-1455-2. eCollection 2019.
9
Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties.
Appl Microbiol Biotechnol. 2018 Nov;102(21):9081-9088. doi: 10.1007/s00253-018-9343-4. Epub 2018 Sep 8.
10
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation.
Extremophiles. 2018 Jan;22(1):1-12. doi: 10.1007/s00792-017-0974-7. Epub 2017 Nov 6.

本文引用的文献

1
Crystallization and preliminary X-ray diffraction analysis of Xyn30D from Paenibacillus barcinonensis.
Acta Crystallogr F Struct Biol Commun. 2014 Jul;70(Pt 7):963-6. doi: 10.1107/S2053230X14012035. Epub 2014 Jun 19.
2
Xyn11E from Paenibacillus barcinonensis BP-23: a LppX-chaperone-dependent xylanase with potential for upgrading paper pulps.
Appl Microbiol Biotechnol. 2014 Jul;98(13):5949-57. doi: 10.1007/s00253-014-5565-2. Epub 2014 Feb 19.
3
Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.
Curr Opin Biotechnol. 2014 Jun;27:150-8. doi: 10.1016/j.copbio.2014.01.014. Epub 2014 Feb 16.
4
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
5
Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules.
Curr Opin Struct Biol. 2013 Oct;23(5):669-77. doi: 10.1016/j.sbi.2013.05.005. Epub 2013 Jun 13.
7
Valorization of biomass: deriving more value from waste.
Science. 2012 Aug 10;337(6095):695-9. doi: 10.1126/science.1218930.
8
Bio-based production of C2-C6 platform chemicals.
Biotechnol Bioeng. 2012 Oct;109(10):2437-59. doi: 10.1002/bit.24599. Epub 2012 Jul 13.
9
Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydrate-binding module.
Appl Environ Microbiol. 2012 Jun;78(11):3923-31. doi: 10.1128/AEM.07932-11. Epub 2012 Mar 23.
10
Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources.
Bioresour Technol. 2011 Dec;102(24):11052-62. doi: 10.1016/j.biortech.2011.06.069. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验