Suppr超能文献

嗜甲基盐菌在光合和化能营养生长过程中的能量代谢。

Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth.

机构信息

Department of Biology, Campus Box 1137, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA.

出版信息

BMC Microbiol. 2010 May 24;10:150. doi: 10.1186/1471-2180-10-150.

Abstract

BACKGROUND

Heliobacterium modesticaldum is a gram-positive nitrogen-fixing phototrophic bacterium that can grow either photoheterotrophically or chemotrophically but not photoautotrophically. Surprisingly, this organism is lacking only one gene for the complete reverse tricarboxylic acid (rTCA) cycle required for autotrophic carbon fixation. Along with the genomic information reported recently, we use multiple experimental approaches in this report to address questions regarding energy metabolic pathways in darkness, CO2 fixation, sugar assimilation and acetate metabolism.

RESULTS

We present the first experimental evidence that D-ribose, D-fructose and D-glucose can be photoassimilated by H. modesticaldum as sole carbon sources in newly developed defined growth medium. Also, we confirm two non-autotrophic CO2-fixation pathways utilized by H. modesticaldum: reactions catalyzed by pyruvate:ferredoxin oxidoreductase and phosphoenolpyruvate carboxykinase, and report acetate excretion during phototrophic and chemotrophic growth. Further, genes responsible for pyruvate fermentation, which provides reducing power for nitrogen assimilation, carbon metabolism and hydrogen production, are either active or up-regulated during chemotrophic growth. The discovery of ferredoxin-NADP+ oxidoreductase (FNR) activity in cell extracts provides the reducing power required for carbon and nitrogen metabolisms. Moreover, we show that photosynthetic pigments are produced by H. modesticaldum during the chemotrophic growth, and demonstrate that H. modesticaldum performs nitrogen fixation during both phototrophic and chemotrophic growth.

CONCLUSION

Collectively, this report represents the first comprehensive studies for energy metabolism in heliobacteria, which have the simplest known photosynthetic machinery among the entire photosynthetic organisms. Additionally, our studies provide new and essential insights, as well as broaden current knowledge, on the energy metabolism of the thermophilic phototrophic bacterium H. modesticaldum during phototrophic and chemotrophic growth.

摘要

背景

中盐杆菌是革兰氏阳性固氮光养细菌,既能异养光合生长,又能化能异养生长,但不能自养光合生长。令人惊讶的是,这种生物仅缺少一个完整三羧酸(rTCA)循环基因,而该循环基因是自养固碳所必需的。结合最近报道的基因组信息,我们在本报告中使用多种实验方法来解决有关黑暗中能量代谢途径、CO2 固定、糖同化和乙酸盐代谢的问题。

结果

我们首次提供实验证据表明,D-核糖、D-果糖和 D-葡萄糖可以作为 H. modesticaldum 新型定义生长培养基中的唯一碳源进行光同化。此外,我们还证实了 H. modesticaldum 利用的两种非自养 CO2 固定途径:丙酮酸:铁氧还蛋白氧化还原酶和磷酸烯醇丙酮酸羧激酶催化的反应,并报告了在光养和化养生长过程中乙酸盐的排泄。此外,在化养生长过程中,负责提供氮同化、碳代谢和产氢所需还原力的丙酮酸发酵相关基因是活跃的或上调的。细胞提取物中发现的铁氧还蛋白-NADP+氧化还原酶(FNR)活性为碳氮代谢提供了所需的还原力。此外,我们表明 H. modesticaldum 在化养生长过程中产生光合色素,并证明 H. modesticaldum 在光养和化养生长过程中都能进行固氮。

结论

总的来说,本报告代表了首次对极端嗜热光养菌的能量代谢进行的全面研究,其光合作用机制是所有光合生物中最简单的。此外,我们的研究为中盐杆菌的光养和化养生长过程中的能量代谢提供了新的和重要的见解,并扩展了目前对该嗜热光养细菌的能量代谢的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1cf/2887804/74a92d829668/1471-2180-10-150-1.jpg

相似文献

1
Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth.
BMC Microbiol. 2010 May 24;10:150. doi: 10.1186/1471-2180-10-150.
3
Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum.
Photosynth Res. 2010 Jun;104(2-3):113-22. doi: 10.1007/s11120-010-9529-9. Epub 2010 Feb 4.
4
A Molecular Biology Tool Kit for the Phototrophic Firmicute Heliobacterium modesticaldum.
Appl Environ Microbiol. 2019 Sep 17;85(19). doi: 10.1128/AEM.01287-19. Print 2019 Oct 1.
5
Deletion of the cytochrome bc complex from Heliobacterium modesticaldum results in viable but non-phototrophic cells.
Photosynth Res. 2021 Jun;148(3):137-152. doi: 10.1007/s11120-021-00845-z. Epub 2021 Jul 8.
6
Metabolic flux analysis of the mixotrophic metabolisms in the green sulfur bacterium Chlorobaculum tepidum.
J Biol Chem. 2010 Dec 10;285(50):39544-50. doi: 10.1074/jbc.M110.162958. Epub 2010 Oct 11.
8
Both forward and reverse TCA cycles operate in green sulfur bacteria.
J Biol Chem. 2010 Nov 12;285(46):35848-54. doi: 10.1074/jbc.M110.157834. Epub 2010 Jul 22.
9
Taxonomy, phylogeny, and ecology of the heliobacteria.
Photosynth Res. 2010 Jun;104(2-3):103-11. doi: 10.1007/s11120-009-9516-1. Epub 2010 Jan 22.

引用本文的文献

1
Steady-state P800 oxidation kinetics indicate that heliobacterial phototrophy is light-limited.
Photosynth Res. 2025 Sep 15;163(5):47. doi: 10.1007/s11120-025-01167-0.
2
Anaerobic HgII reduction is driven by cellular HgII-thiol interactions.
Access Microbiol. 2025 Jan 28;7(1). doi: 10.1099/acmi.0.000932.v3. eCollection 2025.
3
Deletion of -citrate synthase allows for analysis of contributions of tricarboxylic acid cycle directionality to the growth of .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0177224. doi: 10.1128/aem.01772-24. Epub 2025 Mar 6.
4
Identification and characterization of the low molecular mass ferredoxins involved in central metabolism in Heliomicrobium modesticaldum.
Photosynth Res. 2024 Dec;162(2-3):251-271. doi: 10.1007/s11120-023-01069-z. Epub 2024 Feb 2.
5
Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria.
Appl Environ Microbiol. 2023 May 31;89(5):e0037823. doi: 10.1128/aem.00378-23. Epub 2023 May 8.
6
Examination of Genetic Control Elements in the Phototrophic Firmicute .
Microorganisms. 2022 Apr 22;10(5):876. doi: 10.3390/microorganisms10050876.
7
Genomic Features of the Bundle-Forming Heliobacterium .
Microorganisms. 2022 Apr 21;10(5):869. doi: 10.3390/microorganisms10050869.
8
Photoheterotrophic Assimilation of Valerate and Associated Polyhydroxyalkanoate Production by .
Appl Environ Microbiol. 2020 Sep 1;86(18). doi: 10.1128/AEM.00901-20.
9
Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Strain HH.
Microorganisms. 2020 Feb 25;8(3):313. doi: 10.3390/microorganisms8030313.
10
Using the Endogenous CRISPR-Cas System of To Delete the Photochemical Reaction Center Core Subunit Gene.
Appl Environ Microbiol. 2019 Nov 14;85(23). doi: 10.1128/AEM.01644-19. Print 2019 Dec 1.

本文引用的文献

1
An enzyme and(13)C-NMR study of carbon metabolism in heliobacteria.
Photosynth Res. 1994 Jul;41(1):75-88. doi: 10.1007/BF02184147.
2
Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum.
Photosynth Res. 2010 Jun;104(2-3):113-22. doi: 10.1007/s11120-010-9529-9. Epub 2010 Feb 4.
4
Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114.
PLoS One. 2009 Oct 1;4(10):e7233. doi: 10.1371/journal.pone.0007233.
5
Role of the AcsF protein in Chloroflexus aurantiacus.
J Bacteriol. 2009 Jun;191(11):3580-7. doi: 10.1128/JB.00110-09. Epub 2009 Apr 3.
6
Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5859-64. doi: 10.1073/pnas.0901529106. Epub 2009 Mar 24.
8
Microbiology. A fifth pathway of carbon fixation.
Science. 2007 Dec 14;318(5857):1732-3. doi: 10.1126/science.1152209.
9
New cyclic process for carbon assimilation by a photosynthetic bacterium.
Science. 1966 Apr 29;152(3722):673. doi: 10.1126/science.152.3722.673-b.
10
Quantitative mass spectrometry identifies insulin signaling targets in C. elegans.
Science. 2007 Aug 3;317(5838):660-3. doi: 10.1126/science.1139952.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验