Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.
Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
Appl Environ Microbiol. 2023 May 31;89(5):e0037823. doi: 10.1128/aem.00378-23. Epub 2023 May 8.
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N. Nitrogenase is an O-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
固定氮的可用性是所有生态系统净初级生产力的限制因素。固氮生物通过将大气中的氮气转化为氨来克服这一限制。固氮生物是具有广泛生活方式和代谢途径的系统发育多样的细菌和古菌,包括专性厌氧菌和需氧菌,它们通过异养或自养代谢产生能量。尽管代谢途径多种多样,但所有固氮生物都使用相同的酶——氮酶来还原 N。氮酶是一种对 O 敏感的酶,需要以 ATP 的形式提供大量能量和由铁氧还蛋白(Fd)或黄素氧还蛋白(Fld)携带的低势能电子。本综述总结了固氮生物的不同代谢途径如何利用不同的酶来产生氮酶催化所需的低势能还原当量。这些酶包括底物水平 Fd 氧化还原酶、氢化酶、光系统 I 或其他光驱动反应中心、电子分叉 Fix 复合物、质子动力势驱动的 Rnf 复合物和 Fd:NAD(P)H 氧化还原酶。这些酶中的每一种对于产生低势能电子都至关重要,同时整合了天然代谢,以平衡氮酶的整体能量需求。了解各种固氮生物中氮酶的电子传递系统多样性将是指导未来旨在扩大生物固氮在农业中贡献的工程策略的关键。