Suppr超能文献

固氮细菌代谢多样性产生低势能电子的机制。

Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria.

机构信息

Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA.

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.

出版信息

Appl Environ Microbiol. 2023 May 31;89(5):e0037823. doi: 10.1128/aem.00378-23. Epub 2023 May 8.

Abstract

The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N. Nitrogenase is an O-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.

摘要

固定氮的可用性是所有生态系统净初级生产力的限制因素。固氮生物通过将大气中的氮气转化为氨来克服这一限制。固氮生物是具有广泛生活方式和代谢途径的系统发育多样的细菌和古菌,包括专性厌氧菌和需氧菌,它们通过异养或自养代谢产生能量。尽管代谢途径多种多样,但所有固氮生物都使用相同的酶——氮酶来还原 N。氮酶是一种对 O 敏感的酶,需要以 ATP 的形式提供大量能量和由铁氧还蛋白(Fd)或黄素氧还蛋白(Fld)携带的低势能电子。本综述总结了固氮生物的不同代谢途径如何利用不同的酶来产生氮酶催化所需的低势能还原当量。这些酶包括底物水平 Fd 氧化还原酶、氢化酶、光系统 I 或其他光驱动反应中心、电子分叉 Fix 复合物、质子动力势驱动的 Rnf 复合物和 Fd:NAD(P)H 氧化还原酶。这些酶中的每一种对于产生低势能电子都至关重要,同时整合了天然代谢,以平衡氮酶的整体能量需求。了解各种固氮生物中氮酶的电子传递系统多样性将是指导未来旨在扩大生物固氮在农业中贡献的工程策略的关键。

相似文献

8
H2 metabolism in photosynthetic bacteria and relationship to N2 fixation.光合细菌中的H2代谢及其与固氮的关系。
Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):115-35. doi: 10.1016/s0769-2609(83)80100-8.

引用本文的文献

9
Architecture of the RNF1 complex that drives biological nitrogen fixation.驱动生物固氮的 RNF1 复合物的结构。
Nat Chem Biol. 2024 Aug;20(8):1078-1085. doi: 10.1038/s41589-024-01641-1. Epub 2024 Jun 18.

本文引用的文献

4
Crystal structure of the [2Fe-2S] protein I (Shethna protein I) from Azotobacter vinelandii.来自维氏固氮菌的[2Fe-2S]蛋白 I(舍特纳蛋白 I)的晶体结构。
Acta Crystallogr F Struct Biol Commun. 2021 Nov 1;77(Pt 11):407-411. doi: 10.1107/S2053230X21009936. Epub 2021 Oct 19.
7
Regulation and Characterization of Mutants of in .调控和表征 中的 突变体。
Mol Plant Microbe Interact. 2021 Oct;34(10):1167-1180. doi: 10.1094/MPMI-02-21-0037-R. Epub 2021 Oct 28.
9
How Rhizobia Adapt to the Nodule Environment.根瘤菌如何适应根瘤环境。
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验