Suppr超能文献

寡核苷酸作为细胞耐药性抑制剂的药物复杂肺部递送来抑制肺肿瘤生长。

Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance.

机构信息

Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10737-42. doi: 10.1073/pnas.1004604107. Epub 2010 May 24.

Abstract

Development of cancer cell resistance, low accumulation of therapeutic drug in the lungs, and severe adverse treatment side effects represent main obstacles to efficient chemotherapy of lung cancer. To overcome these difficulties, we propose inhalation local delivery of anticancer drugs in combination with suppressors of pump and nonpump cellular resistance. To test this approach, nanoscale-based delivery systems containing doxorubicin as a cell death inducer, antisense oligonucleotides targeted to MRP1 mRNA as a suppressor of pump resistance and to BCL2 mRNA as a suppressor of nonpump resistance, were developed and examined on an orthotopic murine model of human lung carcinoma. The experimental results show high antitumor activity and low adverse side effects of proposed complex inhalatory treatment that cannot be achieved by individual components applied separately. The present work potentially contributes to the treatment of lung cancer by describing a unique combinatorial local inhalation delivery of drugs and suppressors of pump and nonpump cellular resistance.

摘要

癌细胞耐药性的发展、治疗药物在肺部的低积累以及严重的治疗副作用是肺癌化疗效果不佳的主要障碍。为了克服这些困难,我们提出将抗癌药物吸入局部给药与泵和非泵细胞耐药性抑制剂联合使用。为了验证这种方法,我们开发了基于纳米技术的载药系统,其中包含多柔比星作为细胞死亡诱导剂,针对 MRP1 mRNA 的反义寡核苷酸作为泵耐药抑制剂,以及针对 BCL2 mRNA 的非泵耐药抑制剂,并在人肺癌的原位小鼠模型上进行了检测。实验结果表明,所提出的复杂吸入治疗具有高抗肿瘤活性和低不良反应,这是单独使用各个成分无法实现的。本工作通过描述一种独特的联合局部吸入药物和泵及非泵细胞耐药抑制剂的方法,为肺癌的治疗提供了新的思路。

相似文献

1
Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10737-42. doi: 10.1073/pnas.1004604107. Epub 2010 May 24.
2
Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA.
J Control Release. 2013 Nov 10;171(3):349-57. doi: 10.1016/j.jconrel.2013.04.018. Epub 2013 May 3.
4
Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA.
J Drug Target. 2011 Dec;19(10):900-14. doi: 10.3109/1061186X.2011.622404. Epub 2011 Oct 10.
5
Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice.
J Aerosol Med Pulm Drug Deliv. 2013 Dec;26(6):345-54. doi: 10.1089/jamp.2011-0966. Epub 2013 Mar 26.
6
Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer.
Nanomedicine (Lond). 2008 Dec;3(6):761-76. doi: 10.2217/17435889.3.6.761.
8
In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug.
J Control Release. 2006 Aug 28;114(2):153-62. doi: 10.1016/j.jconrel.2006.06.010. Epub 2006 Jun 15.

引用本文的文献

2
Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer.
Cancers (Basel). 2024 Apr 20;16(8):1589. doi: 10.3390/cancers16081589.
4
Personalized Versus Precision Nanomedicine for Treatment of Ovarian Cancer.
Small. 2024 Oct;20(41):e2307462. doi: 10.1002/smll.202307462. Epub 2024 Feb 11.
5
Inhalable Bottlebrush Polymer Bioconjugates as Vectors for Efficient Pulmonary Delivery of Oligonucleotides.
ACS Nano. 2024 Jan 9;18(1):592-599. doi: 10.1021/acsnano.3c08660. Epub 2023 Dec 26.
6
Nanotechnology-Based RNA Vaccines: Fundamentals, Advantages and Challenges.
Pharmaceutics. 2023 Jan 5;15(1):194. doi: 10.3390/pharmaceutics15010194.
7
Imaging drug delivery to the lungs: Methods and applications in oncology.
Adv Drug Deliv Rev. 2023 Jan;192:114641. doi: 10.1016/j.addr.2022.114641. Epub 2022 Dec 9.
9
Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy.
Adv Sci (Weinh). 2022 May;9(16):e2200027. doi: 10.1002/advs.202200027. Epub 2022 Mar 27.

本文引用的文献

1
Epidemiology of lung cancer prognosis: quantity and quality of life.
Methods Mol Biol. 2009;471:469-86. doi: 10.1007/978-1-59745-416-2_24.
2
Co-delivery of siRNA and an anticancer drug for treatment of multidrug-resistant cancer.
Nanomedicine (Lond). 2008 Dec;3(6):761-76. doi: 10.2217/17435889.3.6.761.
3
Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug.
Pharm Res. 2009 Feb;26(2):382-94. doi: 10.1007/s11095-008-9755-4. Epub 2008 Oct 29.
4
Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.
Int J Pharm. 2009 Feb 9;367(1-2):169-78. doi: 10.1016/j.ijpharm.2008.09.017. Epub 2008 Sep 19.
5
The International Epidemiology of Lung Cancer: geographical distribution and secular trends.
J Thorac Oncol. 2008 Aug;3(8):819-31. doi: 10.1097/JTO.0b013e31818020eb.
6
Fast degrading polyesters as siRNA nano-carriers for pulmonary gene therapy.
J Control Release. 2008 Dec 18;132(3):243-51. doi: 10.1016/j.jconrel.2008.06.010. Epub 2008 Jun 19.
7
Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship.
Mayo Clin Proc. 2008 May;83(5):584-94. doi: 10.4065/83.5.584.
10
Disposition of linezolid in the isolated rat lung after systemic and pulmonary drug delivery.
J Antimicrob Chemother. 2007 Nov;60(5):1074-9. doi: 10.1093/jac/dkm306. Epub 2007 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验