School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
Phys Chem Chem Phys. 2010 Aug 21;12(31):8772-91. doi: 10.1039/c003374j. Epub 2010 May 25.
The differential cross section (DCS) for the I + HI(v(i) = 0, j(i) = 0) --> IH(v(f) = 0, j(f) = 2) + I reaction at a translational energy of 21.3 meV is studied, where v(i), j(i) and v(f), j(f) are vibrational, rotational quantum numbers for the initial and final states respectively. We apply new theoretical developments (since 2001) in nearside-farside (NF) theory to provide insights into intricate oscillatory structures in its DCS. It is shown that a simple physically-meaningful parameterization of the scattering (S) matrix, using a background Gaussian term plus a single Regge pole and a quadratic phase, can reproduce, in the forward and sideward directions, the intricate angular scattering obtained from numerical S matrix elements computed from a quantum Born-Oppenheimer-Centrifugal-Sudden scattering technique. This encouraging result suggests that many S matrix elements obtained from computer-intensive calculations can be parameterized in a similar physically-meaningful way. The manner in which the full and NF DCSs change when the Regge pole becomes progressively less important compared to the Gaussian term is also investigated. We report the first application to reactive scattering of the Hatchell NF decomposition, including resummations of the Legendre partial wave series for the scattering amplitude. The Hatchell NF resummed DCSs are compared with the corresponding Fuller NF resummed DCSs for resummation orders of r = 0, 1, 2 and 3. We find that the Fuller NF decomposition always provides a better physical interpretation of the angular scattering. Resummation usually cleans the NF DCSs of unphysical oscillations, especially in the farside (F) DCSs, with the greatest cleaning effect on going from no resummation (r = 0) to first order resummation (r = 1). Identities are derived which relate the Fuller and Hatchell NF subamplitudes for resummation orders, r > 0, to the NF unresummed subamplitudes, r = 0. These identities help us understand the origin of unexpected peaks, which sometimes appear in NF resummed DCSs, together with a simple procedure to remove them. We report Local Angular Momentum (LAM) and DCS x LAM (CLAM) analyses of the angular scattering for r = 0 and r = 1 using the Fuller NF decomposition. The LAM and CLAM analyses provide complementary (yet consistent) information to that obtained from the NF resummed DCSs. It is shown that the "l window representation", as used to analyse elastic scattering in the presence of strong absorption, is a special case of the general resummation theory developed in this paper.
我们研究了在 21.3 毫电子伏特的平移能下 I + HI(v(i)=0,j(i)=0) --> IH(v(f)=0,j(f)=2) + I 反应的微分截面 (DCS),其中 v(i)、j(i) 和 v(f)、j(f) 分别是初始态和终态的振动和转动量子数。我们应用了自 2001 年以来在近侧-远侧 (NF) 理论方面的新理论进展,以深入了解其 DCS 中复杂的振荡结构。结果表明,使用背景高斯项加上单个 Regge 极点和二次相位的简单物理有意义的散射 (S) 矩阵参数化,可以在数值 S 矩阵元素的正向和侧向方向上重现从量子 Born-Oppenheimer-离心-突然散射技术计算得到的复杂角度散射。这一令人鼓舞的结果表明,许多从计算机密集型计算中获得的 S 矩阵元素可以以类似的物理有意义的方式进行参数化。当与高斯项相比,Regge 极点变得不那么重要时,全 NF 和 NF DCS 如何变化的方式也进行了研究。我们报告了 Hatchell NF 分解首次应用于反应散射,包括散射振幅的 Legendre 部分波系列的重新求和。将 Hatchell NF 重新求和的 DCS 与相应的 Fuller NF 重新求和的 DCS 进行了比较,其中重新求和的顺序 r = 0、1、2 和 3。我们发现,Fuller NF 分解总是为角度散射提供更好的物理解释。重新求和通常可以清除 NF DCS 中的非物理振荡,特别是在远侧 (F) DCS 中,从无重新求和 (r = 0) 到一阶重新求和 (r = 1) 的效果最大。推导出了将 Fuller 和 Hatchell NF 子振幅与重新求和顺序相关联的恒等式,r>0,与 NF 未重新求和的子振幅,r=0。这些恒等式有助于我们理解有时出现在 NF 重新求和 DCS 中的意外峰值的来源,以及一种简单的去除它们的方法。我们报告了使用 Fuller NF 分解对 r = 0 和 r = 1 的角度散射进行局部角动量 (LAM) 和 DCS x 角动量 (CLAM) 分析。LAM 和 CLAM 分析提供了与 NF 重新求和 DCS 获得的互补 (但一致) 信息。结果表明,在存在强吸收的情况下用于分析弹性散射的“l 窗口表示”是本文中开发的一般重新求和理论的特殊情况。