School of Chemistry, The University of Manchester, Manchester M13 9PL, UK.
Phys Chem Chem Phys. 2011 May 14;13(18):8392-406. doi: 10.1039/c0cp01354d. Epub 2010 Nov 11.
A neglected topic in the theory of reactive scattering is the use of parameterized scattering (S) matrix elements to calculate differential cross sections (DCSs). We construct four simple parameterizations, whose moduli are smooth step-functions and whose phases are quadratic functions of the total angular momentum quantum number. Application is made to forward glory scattering in the DCS of the H + D(2)(v(i) = 0, j(i) = 0) → HD(v(f) = 3, j(f) = 0) + D reaction at a translational energy of 1.81 eV, where v and j are vibrational and rotational quantum numbers respectively. The parameterized S matrix elements can reproduce the forward scattering for centre-of-mass reactive scattering angles up to 30° and can identify the total angular momenta (equivalently, impact parameters) that contribute to the glory. The theoretical techniques employed to analyze structure in the DCS include: nearside-farside theory, local angular momentum theory--in both cases incorporating resummations of the partial wave series representation of the scattering amplitude--and the uniform semiclassical theory of forward glory scattering. Our approach is an example of Heisenberg's S matrix programme, in which no potential energy surface is used. Our calculations for the DCS using the four parameterized S matrix elements are counterexamples to the following universal statements often found in the chemical physics literature: "every molecular scattering investigation needs detailed information about the interaction potential," and "an accurate potential energy surface is an essential element in carrying out simulations of a chemical reaction". Both these statements are false.
反应散射理论中一个被忽视的课题是使用参数化散射(S)矩阵元来计算微分截面(DCS)。我们构建了四个简单的参数化,其模是光滑的阶跃函数,相位是总角动量量子数的二次函数。在 1.81 eV 的平移能下,应用于 H + D(2)(v(i)= 0,j(i)= 0)→HD(v(f)= 3,j(f)= 0)+ D 反应的前向光辉散射的 DCS 中,其中 v 和 j 分别是振动和转动量子数。参数化 S 矩阵元可以再现质心反应散射角高达 30°的前向散射,并可以识别对光辉有贡献的总角动量(等效地,碰撞参数)。用于分析 DCS 中结构的理论技术包括:近侧-远侧理论,局部角动量理论——在这两种情况下都包含对散射振幅的分波级数表示的重新求和——以及前向光辉散射的统一半经典理论。我们的方法是海森堡 S 矩阵方案的一个例子,其中不使用势能面。我们使用四个参数化 S 矩阵元对 DCS 的计算是对化学物理文献中经常发现的以下普遍陈述的反例:“每一个分子散射研究都需要关于相互作用势能的详细信息”,以及“一个准确的势能面是进行化学反应模拟的必要元素”。这两个陈述都是错误的。