Sinhababu A K, Borchardt R T
Departments of Medicinal and Pharmaceutical Chemistry, School of Pharmacy, University of Kansas, Lawrence, KS 66045, U.S.A.
Neurochem Int. 1988;12(3):273-84. doi: 10.1016/0197-0186(88)90165-9.
5,7-Dihydroxytryptamine (5,7-DHT) is a selective serotonergic neurotoxin by virtue of its selective uptake into 5-hydroxytryptamine neurons and its ability to undergo autoxidation. The mechanism by which 5,7-DHT induces neurodegenerative effects remains enigmatic. The mechanism of autoxidation of 5,7-DHT, which has been recently discovered, is unique among the autoxidizable neurotoxins and involves incorporation of oxygen to produce the 4-hydroperoxy-5-keto derivative of 5,7-DHT and thence the (4,7) p-quinone of 4,5,7-trihydroxytryptamine (4,5,7-THTQ), a relatively unreactive quinone. In addition, no reduced oxygen species such as hydrogen peroxide, superoxide and hydroxyl radical are produced during autoxidation of 5,7-DHT. Yet, there is evidence to suggest that both the covalent modification of endogenous macromolecules by 5,7-DHT derived products and the toxic effects of reduced oxygen species are, at least in part, responsible for the neurodegenerative effects of 5,7-DHT. Here we propose that (1) the 4-hydroperoxy-5-keto derivative of 5,7-DHT may serve as a substrate for glutathione peroxidase to eventually produce reduced oxygen species and 4,5,7-THTQ, (2) 4,5,7-THTQ may undergo redox cycling thereby generating reduced oxygen species and lowering the reducing equivalents of the neuron, (3) rapid oxygen consumption by 5,7-DHT and the products derived from it may lead to hypoxia, and (4) the product of autoxidation of 5,7-dihydroxyindole-3-acetaldehyde, the monoamine oxidase metabolite of 5,7-DHT, may serve as an alkylating (crosslinking) agent of proteins.